scispace - formally typeset
Search or ask a question
Author

Lester Andrews

Bio: Lester Andrews is an academic researcher from University of Virginia. The author has contributed to research in topics: Infrared spectroscopy & Molecule. The author has an hindex of 68, co-authored 888 publications receiving 24613 citations. Previous affiliations of Lester Andrews include Ames Research Center & Environmental Molecular Sciences Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used infrared spectra to identify the methylidene complex CH2HfH2 and showed that it is more stable than the symmetrical nonagostic structure.

42 citations

Journal ArticleDOI
TL;DR: Structures, vibrational frequencies, and heats of formation were predicted for MX4 and both singlet and triplet states of MX2 using the Feller-Peterson-Dixon composite electronic structure approach based on coupled cluster CCSD(T) calculations extrapolated to the complete basis set limit with additional corrections including spin orbit effects.
Abstract: Structures, vibrational frequencies, and heats of formation were predicted for MX4 and both singlet and triplet states of MX2 (M = group 4, group 14, Ce, and Th; X = F and Cl) using the Feller–Peterson–Dixon composite electronic structure approach based on coupled cluster CCSD(T) calculations extrapolated to the complete basis set limit with additional corrections including spin orbit effects. The spin–orbit corrections are not large but need to be included for chemical accuracy of ±1 kcal/mol. The singlet–triplet splittings were calculated for the dihalides and all compounds have singlet ground states except for the dihalides of Ti, Zr, and Ce which have triplet ground states. The calculated heats of formation are in good agreement with the available experimental data. Our predictions suggest that the experimental heats of formation need to be revised for a number of tetrahalides: TiF4, HfF4, PbF4, PbCl4, and ThCl4 as well as a number of dihalides: GeF2, SnF2, PbF2, TiF2, and TiCl2. The calculated heats ...

41 citations

Journal ArticleDOI
TL;DR: In this paper, the global minimum BC2 structure was predicted to be an asymmetric triangle with a strong symmetric B-C2 stretching frequency near 1200 cm−1 and the calculated boron−10/boron−11 frequency ratio (1.0323) was in excellent agreement with the observed ratio.
Abstract: Pulsed laser evaporation of pellets pressed from boron and graphite powder gave a new 1:4 doublet at 1232.5 and 1194.6 cm−1 in addition to the carbon cluster absorptions reported previously. The 1232.5 cm−1 band dominated boron‐10 experiments. The new bands increased as carbon cluster bands decreased with increasing B/C ratio in the pellet and with increasing laser power. Augmented coupled cluster and full‐valence complete active space SCF (CASSCF) calculations predict the global minimum BC2 structure to be an asymmetric triangle: however, the vibrationally averaged structure will be an isosceles triangle with a strong symmetric B–C2 stretching frequency near 1200 cm−1. The calculated boron‐10/boron‐11 frequency ratio (1.0323) is in excellent agreement with the observed ratio (1.0317), and confirms assignment of the 1194.6 cm−1 band to the BC2 ring. Calculations predict linear BCC to be less stable by 6.2±2 kcal/mol and to absorb in the 2000–2050 cm−1 range: the barrier towards rearrangement to the cyclic...

41 citations

Journal ArticleDOI
TL;DR: In this paper, laser-ablated atomic boron with F 2, Cl 2, Br 2, and I 2, trapped in solid argon at 12±1 K, was characterized by infrared absorption spectroscopy.
Abstract: BX n (X=F, Cl, Br, I; n=1, 2, 3) species were produced by the reaction of laser-ablated atomic boron with F 2 , Cl 2 , Br 2 , and I 2 , trapped in solid argon at 12±1 K, and characterized by infrared absorption spectroscopy. The relative band intensities observed for BX, BX 2 , and BX 3 species depended on the method of production. Enclosing the boron target inside a tube and codepositing boron atoms with halogen molecules enhanced the primary reaction products BX and BX 2 , whereas passing the halogen through the tube and coaxially mixing with atomic boron promoted the final reaction product BX 3

41 citations


Cited by
More filters
Book
01 Sep 2001
TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Abstract: "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particularly instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von RaguE Schleyer "A conspicuous hole in the computational chemist's library is nicely filled by this book, which provides a wide-ranging and pragmatic view of the subject.[...It] should justifiably become the favorite text on the subject for practioneers who aim to use DFT to solve chemical problems." J. F. Stanton, J. Am. Chem. Soc. "The authors' aim is to guide the chemist through basic theoretical and related technical aspects of DFT at an easy-to-understand theoretical level. They succeed admirably." P. C. H. Mitchell, Appl. Organomet. Chem. "The authors have done an excellent service to the chemical community. [...] A Chemist's Guide to Density Functional Theory is exactly what the title suggests. It should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems." M. Kaupp, Angew. Chem.

3,550 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the local density functional formalism and some of its applications and discuss the reasons for the successes and failures of the local-density approximation and some modifications.
Abstract: A scheme that reduces the calculations of ground-state properties of systems of interacting particles exactly to the solution of single-particle Hartree-type equations has obvious advantages. It is not surprising, then, that the density functional formalism, which provides a way of doing this, has received much attention in the past two decades. The quality of the energy surfaces calculated using a simple local-density approximation for exchange and correlation exceeds by far the original expectations. In this work, the authors survey the formalism and some of its applications (in particular to atoms and small molecules) and discuss the reasons for the successes and failures of the local-density approximation and some of its modifications.

3,285 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS) in photocatalysis were surveyed comprehensively and the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2.
Abstract: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2–), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption–desorption equilibrium at the TiO2–solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity...

2,249 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations