scispace - formally typeset
Search or ask a question
Author

Lester Andrews

Bio: Lester Andrews is an academic researcher from University of Virginia. The author has contributed to research in topics: Infrared spectroscopy & Molecule. The author has an hindex of 68, co-authored 888 publications receiving 24613 citations. Previous affiliations of Lester Andrews include Ames Research Center & Environmental Molecular Sciences Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds.
Abstract: Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3−VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3−MH and CH2MH2) along with the methylidyne trihydride anion complexes (CH⋮MH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal−hydrogen bonds.

40 citations

Journal ArticleDOI
TL;DR: The ability of the argon matrix cage to quench substantial reaction exothermicity is demonstrated by the preferential stabilization of (HF)2 in these experiments as mentioned in this paper, and sample annealing markedly increased trimer, relative to dimer and monomer, and destroyed the intermediate species.
Abstract: Argon diluted samples of H2 and F2 were codeposited at 10 K, and little reaction was observed. Photolysis produced a strong new 3826 cm−1 band, in agreement with assignment to (HF)2 from HF codeposition experiments, weak HF monomer and trimer bands, and a sharp new 3930 cm−1 band for the H=HF intermediate species. Sample annealing markedly increased trimer, relative to dimer and monomer, and destroyed the intermediate species. Similar experiments were done with D2 and HD; the latter gave a strong 2808 cm−1 absorption for the more stable (HF) (DF) mixed dimer and a weak 3832 cm−1 band for the less stable (DF) (HF) mixed dimer. The ability of the argon matrix cage to quench substantial reaction exothermicity is demonstrated by the preferential stabilization of (HF)2 in these experiments.

40 citations

Journal ArticleDOI
TL;DR: The reactions between uranium atoms and CH3X (X = F, Cl, and Br) molecules are investigated in a solid argon matrix and parallels between the uranium and analogous thorium methylidene complexes are discussed.
Abstract: The reactions between uranium atoms and CH 3 X (X = F, Cl, and Br) molecules are investigated in a solid argon matrix. The major products formed on ultraviolet irradiation are the CH 2 =UHX methylidene complexes. DFT calculations predict these triplet ground-state structures to be stable and to have significant agostic interactions. Parallels between the uranium and analogous thorium methylidene complexes are discussed.

40 citations


Cited by
More filters
Book
01 Sep 2001
TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Abstract: "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particularly instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von RaguE Schleyer "A conspicuous hole in the computational chemist's library is nicely filled by this book, which provides a wide-ranging and pragmatic view of the subject.[...It] should justifiably become the favorite text on the subject for practioneers who aim to use DFT to solve chemical problems." J. F. Stanton, J. Am. Chem. Soc. "The authors' aim is to guide the chemist through basic theoretical and related technical aspects of DFT at an easy-to-understand theoretical level. They succeed admirably." P. C. H. Mitchell, Appl. Organomet. Chem. "The authors have done an excellent service to the chemical community. [...] A Chemist's Guide to Density Functional Theory is exactly what the title suggests. It should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems." M. Kaupp, Angew. Chem.

3,550 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the local density functional formalism and some of its applications and discuss the reasons for the successes and failures of the local-density approximation and some modifications.
Abstract: A scheme that reduces the calculations of ground-state properties of systems of interacting particles exactly to the solution of single-particle Hartree-type equations has obvious advantages. It is not surprising, then, that the density functional formalism, which provides a way of doing this, has received much attention in the past two decades. The quality of the energy surfaces calculated using a simple local-density approximation for exchange and correlation exceeds by far the original expectations. In this work, the authors survey the formalism and some of its applications (in particular to atoms and small molecules) and discuss the reasons for the successes and failures of the local-density approximation and some of its modifications.

3,285 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS) in photocatalysis were surveyed comprehensively and the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2.
Abstract: The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2–), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption–desorption equilibrium at the TiO2–solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity...

2,249 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations