scispace - formally typeset
Search or ask a question
Author

Lev D. Gelb

Bio: Lev D. Gelb is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Monte Carlo method & Molecular dynamics. The author has an hindex of 24, co-authored 61 publications receiving 3531 citations. Previous affiliations of Lev D. Gelb include National University of San Marcos & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the current state of knowledge of phase separation and phase equilibria in porous materials can be found in this article, where the focus is on fundamental studies of simple fluids and well-characterized materials.
Abstract: We review the current state of knowledge of phase separation and phase equilibria in porous materials. Our emphasis is on fundamental studies of simple fluids (composed of small, neutral molecules) and well-characterized materials. While theoretical and molecular simulation studies are stressed, we also survey experimental investigations that are fundamental in nature. Following a brief survey of the most useful theoretical and simulation methods, we describe the nature of gas‐liquid (capillary condensation), layering, liquid‐liquid and freezing/melting transitions. In each case studies for simple pore geometries, and also more complex ones where available, are discussed. While a reasonably good understanding is available for phase equilibria of pure adsorbates in simple pore geometries, there is a need to extend the models to more complex pore geometries that include effects of chemical and geometrical heterogeneity and connectivity. In addition, with the exception of liquid‐liquid equilibria, little work has been done so far on phase separation for mixtures in porous media.

1,436 citations

Journal ArticleDOI
01 Jan 1999-Langmuir
TL;DR: Gelb et al. as mentioned in this paper used the Barrett−Joyner−Halenda (BJH) method to yield pore size distributions, which are tested against exact pore sizes directly measured from the pore structures.
Abstract: We have prepared a series of molecular models of porous glass using a recently developed procedure (Gelb, L. D.; Gubbins, K. E. Langmuir 1998, 14, 2097) that mimics the experimental processes that produce Vycor and controlled-pore glasses. We calculate nitrogen adsorption isotherms in these precisely characterized model glasses using Monte Carlo simulations. These isotherms are analyzed using the Barrett−Joyner−Halenda (BJH) method to yield pore size distributions, which are tested against exact pore size distributions directly measured from the pore structures. The BJH method yields overly sharp distributions that are systematically shifted (by about 1 nm) to lower pore sizes than those from our geometric method.

430 citations

Journal ArticleDOI
20 Mar 1998-Langmuir
TL;DR: In this paper, the authors developed a realistic model for studying adsorption in porous glasses which reproduces the complex structure of these materials, and the model porous material is generated by a quench molecular dynamics procedure which mimics the processes by which Vycor glass and controlled-pore glasses are produced.
Abstract: We have developed a realistic model for studying adsorption in porous glasses which reproduces the complex structure of these materials. The model porous material is generated by a quench molecular dynamics procedure which mimics the processes by which Vycor glass and controlled-pore glasses are produced. We examine this procedure and the resulting model materials by a variety of methods and find that they have porosities, pore sizes, and surface areas very similar to the real glasses. These simulated glasses have precisely known properties (surface area, pore size distribution, etc.), in contrast to experimental glasses; computer experiments on such model glasses can therefore be used to test new and existing experimental methods of characterization. We calculate the adsorption isotherms for a model of nitrogen adsorbing onto these materials and analyze these data using the BET isotherm. The BET monolayer density exhibits systematic variations with both the average pore size and the porosity of the model...

406 citations

Journal ArticleDOI
01 Aug 1999-Langmuir
TL;DR: In this article, the melting point of carbon tetrachloride and nitrobenzene in controlled pore glass (CPG) and Vycor was investigated.
Abstract: We report both experimental measurements and molecular simulations of the melting and freezing behavior of simple fluids in porous media. The experimental studies are for carbon tetrachloride and nitrobenzene in controlled pore glass (CPG) and Vycor. Differential scanning calorimetry (DSC) was used to determine the melting point in the porous materials for each of the glass samples. In the case of nitrobenzene (which has a nonzero dipole moment), dielectric spectroscopy was also used to determine melting points. Measurements by the two methods were in excellent agreement. The melting point was found to be depressed relative to the bulk value for both fluids. With the exception of smallest pores, the melting point depression was proportional to the reciprocal of the pore diameter, in agreement with the Gibbs-Thomson equation. Structural information about the different confined phases was obtained by measuring the dielectric relaxation times using dielectric spectroscopy. Monte Carlo simulations were used to determine the shift in the melting point, T m , for a simple fluid in pores having both repulsive and strongly attractive walls. The strength of attraction to the wall was shown to have a large effect on the shift in T m , with T m being reduced for weakly attracting walls. For strongly attracting walls, such as graphitic carbon, the melting point increases for slit-shaped pores. For such materials, the adsorbed contact layer is shown to melt at a higher temperature than the inner adsorbed layers. A method for calculating the free energies of solids in pores is presented, and it is shown that the solid-liquid transition is first order in these systems.

139 citations

Journal ArticleDOI
TL;DR: In this paper, large-scale molecular dynamics simulations of the polymerization of silicic acid in aqueous solution using the potential developed by Fueston and Garofalini were performed.
Abstract: We have performed large-scale molecular dynamics simulations of the polymerization of silicic acid in aqueous solution using the potential developed by Fueston and Garofalini [J. Phys. Chem. 1990, 94, 5351]. Seventeen simulations, with different water-to-silicon ratios and silicic acid concentrations, were each run for between 1.6 and 12.5 ns, at temperatures of 1500, 2000, and 2500 K. Water clearly acts as a catalyst in these simulations. When the water-to-silicon ratio is large, we find that the initial stages of the polymerization process are dominated by the conversion of monomers to dimers and addition of monomers to small clusters, while at longer times cluster−cluster aggregation is observed. Using data from simulations at different temperatures, the activation energies of condensation between silicic acid monomers were calculated at different water-to-silicon ratios and found to compare favorably with experimental results; an extrapolation (at constant density) of simulated reaction rates to ambie...

102 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: Observations suggest that carbon nanotubes, with their rigid nonpolar structures, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.
Abstract: Confinement of matter on the nanometre scale can induce phase transitions not seen in bulk systems1. In the case of water, so-called drying transitions occur on this scale2,3,4,5 as a result of strong hydrogen-bonding between water molecules, which can cause the liquid to recede from nonpolar surfaces to form a vapour layer separating the bulk phase from the surface6. Here we report molecular dynamics simulations showing spontaneous and continuous filling of a nonpolar carbon nanotube with a one-dimensionally ordered chain of water molecules. Although the molecules forming the chain are in chemical and thermal equilibrium with the surrounding bath, we observe pulse-like transmission of water through the nanotube. These transmission bursts result from the tight hydrogen-bonding network inside the tube, which ensures that density fluctuations in the surrounding bath lead to concerted and rapid motion along the tube axis7,8,9. We also find that a minute reduction in the attraction between the tube wall and water dramatically affects pore hydration, leading to sharp, two-state transitions between empty and filled states on a nanosecond timescale. These observations suggest that carbon nanotubes, with their rigid nonpolar structures10,11, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.

3,115 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: The present tutorial review intends to explain the origin of this special behaviour of nanomaterials, where gold ceases to be noble, and 2-3 nm nanoparticles are excellent catalysts which also exhibit considerable magnetism.
Abstract: Gold is known as a shiny, yellow noble metal that does not tarnish, has a face centred cubic structure, is non-magnetic and melts at 1336 K. However, a small sample of the same gold is quite different, providing it is tiny enough: 10 nm particles absorb green light and thus appear red. The meltingtemperature decreases dramatically as the size goes down. Moreover, gold ceases to be noble, and 2–3 nm nanoparticles are excellent catalysts which also exhibit considerable magnetism. At this size they are still metallic, but smaller ones turn into insulators. Their equilibrium structure changes to icosahedral symmetry, or they are even hollow or planar, depending on size. The present tutorial review intends to explain the origin of this special behaviour of nanomaterials.

1,852 citations

Journal ArticleDOI
TL;DR: Atomic force microscopy (AFM) force-distance curves have become a fundamental tool in several fields of research, such as surface science, materials engineering, biochemistry and biology.

1,559 citations