scispace - formally typeset
Search or ask a question
Author

Li Chen

Bio: Li Chen is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Lattice Boltzmann methods & Proton exchange membrane fuel cell. The author has an hindex of 34, co-authored 100 publications receiving 3527 citations. Previous affiliations of Li Chen include Chinese Ministry of Education & ETH Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a critical review of the theory and applications of a multiphase model in the community of the lattice Boltzmann method (LBM), the pseudopotential model proposed by Shan and Chen (1993), is presented.

569 citations

Journal ArticleDOI
TL;DR: It is found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales.
Abstract: Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

282 citations

Journal ArticleDOI
TL;DR: In this article, a carbon paper gas diffusion layer (GDL) of interdigitated PEMFC is reconstructed using the stochastic method, and its macroscopic transport properties are numerically predicted.

190 citations

Journal ArticleDOI
Tao-Feng Cao1, Hong Lin1, Li Chen1, Ya-Ling He1, Wen-Quan Tao1 
TL;DR: In this paper, a three-dimensional, two-phase, non-isothermal model of PEMFC is presented to investigate the interaction between water and thermal transport processes, the effects of anisotropic characters of gas diffusion layer, different boundary temperature of flow plate and the effect of gas inlet humidity.

150 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the shale gas transport process during shale gas production is presented, and the corresponding multi-scale simulation models that describe the gas multiscale transport mechanisms and accurately predict the amount of shale production are explained.

137 citations


Cited by
More filters
01 Jun 2005

3,154 citations

01 Jan 2009
TL;DR: The aim of the research presented in this thesis is to create new methods for design for manufacturing, by using several approaches of KE, and find the beneficial and less beneficial aspects of these methods in comparison to each other and earlier research.
Abstract: As companies strive to develop artefacts intended for services instead of traditional sell-off, new challenges in the product development process arise to promote continuous improvement and increasing market profits. This creates a focus on product life-cycle components as companies then make life-cycle commitments, where they are responsible for the function availability during the extent of the life-cycle, i.e. functional products. One of these life-cycle components is manufacturing; therefore, companies search for new approaches of success during manufacturability evaluation already in engineering design. Efforts have been done to support early engineering design, as this phase sets constraints and opportunities for manufacturing. These efforts have turned into design for manufacturing methods and guidelines. A further step to improve the life-cycle focus during early engineering design is to reuse results and use experience from earlier projects. However, because results and experiences created during project work are often not documented for reuse, only remembered by some people, there is a need for design support. Knowledge engineering (KE) is a methodology for creating knowledge-based systems, e.g. systems that enable reuse of earlier results and make available both explicit and tacit corporate knowledge, enabling the automated generation and evaluation of new engineering design solutions during early product development. There are a variety of KE-approaches, such as knowledge-based engineering, case-based reasoning and programming, which have been used in research to develop design for manufacturing methods and applications. There are, however, opportunities for research where several approaches and their interdependencies, to create a transparent picture of how KE can be used to support engineering design, are investigated. The aim of the research presented in this thesis is to create new methods for design for manufacturing, by using several approaches of KE, and find the beneficial and less beneficial aspects of these methods in comparison to each other and earlier research. This thesis presents methods and applications for design for manufacturing using KE. KE has been employed in several ways, namely rule-based, rule-, programmingand finite element analysis (FEA)-based, and ruleand plan-based, which are tested and compared with each other. Results show that KE can be used to generate information about manufacturing in several ways. The rule-based way is suitable for supporting life-cycle commitments, as engineering design and manufacturing can be integrated with maintenance and performance predictions during early engineering design, though limited to the firing of production rules. The rule-, programmingand FEA-based way can be used to integrate computer-aided design tools and virtual manufacturing for non-linear stress and displacement analysis. This way may also bridge the gap between engineering designers and computational experts, even though this way requires a larger effort to program than the rule-based. The ruleand planbased way can enable design for manufacturing in two fashions – based on earlier manufacturing plans and based on rules. Because earlier manufacturing plans, together with programming algorithms, can handle knowledge that may be more intricate to capture as rules, as opposed to the time demanding routine work that is often automated by means of rules, several opportunities for designing for manufacturing exist.

727 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the latest status of PEM fuel cell technology development and applications in the portable and transportation power through an overview of the state of the art and most recent technological advances, and describe materials and water/thermal transport management for fuel cell design and operational control.

627 citations