scispace - formally typeset
Search or ask a question
Author

Li Deng

Bio: Li Deng is an academic researcher from Brandeis University. The author has contributed to research in topics: Enantioselective synthesis & Cinchona Alkaloids. The author has an hindex of 46, co-authored 134 publications receiving 8998 citations. Previous affiliations of Li Deng include Urbana University & Harvard University.


Papers
More filters
Journal ArticleDOI
Shi-Kai Tian1, Yonggang Chen1, Jianfeng Hang1, Liang Tang1, Paul McDaid1, Li Deng1 
TL;DR: These studies demonstrate the potential of modified cinchona alkaloids as broadly useful chiral organic catalysts for asymmetric synthesis.
Abstract: Insights into the role played by modified cinchona alkaloids in the Sharpless asymmetric dihydroxylation inspired studies of modified cinchona alkaloids as chiral organic catalysts that lead to the development of highly enantioselective alcoholyses for the desymmetrization, kinetic resolution, and dynamic kinetic resolution of cyclic anhydrides, cyanation of ketones, and 1,4-addition of thiols to cylic enones. These studies demonstrate the potential of modified cinchona alkaloids as broadly useful chiral organic catalysts for asymmetric synthesis.

511 citations

Journal ArticleDOI
TL;DR: The development of a new class of readily accessible chiral bifunctional organic catalysts that could be derived in one or two steps in high yield from either quinidine or quinine are described.
Abstract: The development of readily accessible bifunctional chiral catalysts is a desirable yet challenging goal in catalytic asymmetric synthesis. In this communication, we describe the development of a new class of readily accessible chiral bifunctional organic catalysts that could be derived in one or two steps in high yield from either quinidine or quinine. These catalysts have been shown to catalyze a highly enantioselective conjugate addition of methyl and ethyl malonates and β-ketoesters to a broad range of β-substituted nitroalkenes, an synthetically important C−C bond-forming reaction utilizing readily available starting materials. This new catalytic asymmetric reaction proceeds in 91−98% ee and 71−99% yield.

473 citations

Journal ArticleDOI
TL;DR: This is the first highly efficient organocatalytic asymmetric Henry reaction with ketones, which affords high enantioselectivity as well as good to excellent yield for a broad range of alpha-ketoesters.
Abstract: The development of highly enantioselective and general catalytic nitroaldol (Henry) reactions with ketones is a challenging yet desirable task in organic synthesis. In this communication, we report an asymmetric nitroaldol reaction with α-ketoesters catalyzed by a new C6‘−OH cinchona alkaloid catalyst. This is the first highly efficient organocatalytic asymmetric Henry reaction with ketones. This reaction is operationally simple and affords high enantioselectivity as well as good to excellent yield for a broad range of α-ketoesters.

294 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation.
Abstract: Efficient and reliable amplification of chirality has borne its greatest fruit with transition metal-catalyzed reactions since enantiocontrol may often be imposed by replacing an achiral or chiral racemic ligand with one that is chiral and scalemic While the most thoroughly developed enantioselective transition metal-catalyzed reactions are those involving transfer of oxygen (epoxidation and dihydroxylation)1,2 and molecular hydrogen,3 the focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation4-9 The synthetic utility of transitionmetal-catalyzed allylic alkylations has been soundly demonstrated since its introduction nearly three decades ago10-21 In contrast to processes where the allyl moiety acts as the nucleophilic partner, we will limit our discussion to processes which result in nucleophilic displacements on allylic substrates (eq 1) Such reactions have been recorded with a broad

2,576 citations

Journal ArticleDOI
TL;DR: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed and ongoing research in this area should result in the development of even better antifouling materials in the future.
Abstract: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.

2,278 citations

Journal ArticleDOI
TL;DR: Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes, supramolecular aspects and characterization methods.
Abstract: The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal–organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references).

2,102 citations