scispace - formally typeset
Search or ask a question
Author

Li Hongyu

Bio: Li Hongyu is an academic researcher from Tianjin University. The author has contributed to research in topics: Brine shrimp & Firmicutes. The author has an hindex of 3, co-authored 4 publications receiving 37 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Variation analyses of MP characteristics revealed that cereal crop farmlands (wheat, paddy land) were more likely to contain fibrous shapes and large MP particles (1-5 mm), and Economically important tree lands (orchards, woodlands) were likely to containing fragment shapes and pony-size MPs (0.02-0.2 mm).

107 citations

Journal ArticleDOI
TL;DR: This review will highlight the close interactions between MPs and microorganisms, and provide suggestions for future studies on the impact of plastic particles on microbial communities.

80 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent research progress in this field and highlighted the essential roles of the microbes on the interactions between MPs and heavy metals with the hope to promote more studies to unveil action mechanisms and reduce/eliminate the risks associated with MP presence.
Abstract: Microplastics (MPs), tiny particles broken down from larger pieces of plastics, have accumulated everywhere on the earth. As an inert carbon stream in aquatic environment, they have been reported as carriers for heavy metals and exhibit diverse interactive effects. However, these interactions are still poorly understood, especially mechanisms driving these interactions and how they pose risks on living organisms. In this mini review, a bibliometric analysis in this field was conducted and then the mechanisms driving these interactions were examined, especially emphasizing the important roles of microorganisms on the interactions. Their combined toxic effects and the potential hazards to human health were also discussed. Finally, the future research directions in this field were suggested. This review summarized the recent research progress in this field and highlighted the essential roles of the microbes on the interactions between MPs and heavy metals with the hope to promote more studies to unveil action mechanisms and reduce/eliminate the risks associated with MP presence.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of polyethylene (PE) and polystyrene (PS) MPs on the growth of brine shrimp and corresponding changes of gut microbiota were investigated.
Abstract: Microplastics (MPs) are ubiquitous in the aquatic environment and can be frequently ingested by zooplankton, leading to various effects. Brine shrimp (Artemia parthenogenetica) has an important role in the energy flow through trophic levels in different seawater systems. In this work, the influence of polyethylene (PE) and polystyrene (PS) MPs on the growth of brine shrimp and corresponding changes of gut microbiota were investigated. Our results showed that the MPs remarkably reduced the growth rate of brine shrimp, and the two types of MPs have different impacts. The average body length of brine shrimps was reduced by 17.92 and 14.95% in the PE group and PS group, respectively. MPs are mainly found in the intestine, and their exposure evidently affects the gut microbiota. By using 16S rRNA gene high-throughput sequencing, 32 phyla of bacteria were detected in the intestine, and the microbiome consisted mainly of Proteobacteria, Firmicutes, and Actinobacteria. MPs' exposure significantly increased the gut microbial diversity. For the PE group, the proportion of Actinobacteria and Bacteroidetes increased by 45.26 and 2.73%, respectively. For the PS group, it was 54.95 and 1.27%, respectively. According to the analysis on genus level, the proportions of Ponticoccus, Seohaeicola, Polycyclovorans, and Methylophaga decreased by 46.38, 1.24, 1.07, and 2.66%, respectively, for the PE group and 57.87, 1.43, 0.88, and 2.24%, respectively, for the PS group. In contrast, the proportions of Stappia, Microbacterium, and Dietzia increased by 1.12, 23.27, and 11.59%, respectively, for the PE group, and 1.09, 3.79, and 42.96%, respectively, for the PS group. These experimental results demonstrated that the ingestion of MPs by brine shrimp can alter the composition of the gut microbiota and lead to a slow growth rate. This study provides preliminary data support for understanding the biotoxicity of MPs to invertebrate zooplankton and is conducive to the further risk assessment of MP exposure.

5 citations


Cited by
More filters
Journal Article
TL;DR: Degradable biomaterials have been investigated for biomedical applications with novel materials constantly being developed to meet new challenges as mentioned in this paper, and a review summarizes the most recent advances in the field over the past four years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Abstract: Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. To fit functional demand, materials with desired physical, chemical, biological, biomechanical, and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.

275 citations

Journal ArticleDOI
TL;DR: In this article, a summary of the occurrence and characteristics of microplastics in various soil environments, and then highlights the impacts of MPs on soil physical, chemical, and microbiological properties.

155 citations

Journal ArticleDOI
TL;DR: In this paper , a summary of the occurrence and characteristics of microplastics in various soil environments, and then highlights the impacts of MPs on soil physical, chemical, and microbiological properties.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems and provided a background assessment on the adverse effects of plastic pollution on terrestrial and aquatic ecosystems; interlink the management of plastics with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations.
Abstract: Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.

152 citations

Journal ArticleDOI
TL;DR: It is implied that MPs co-occurring with heavy metals may change metal mobility, soil fertility, and microbial diversity and functions, thus causing a potential threat to soil ecosystem multifunctionality.

122 citations