scispace - formally typeset
Search or ask a question
Author

Li Li

Bio: Li Li is an academic researcher from Harbin Engineering University. The author has contributed to research in topics: Laser & Terahertz radiation. The author has an hindex of 21, co-authored 178 publications receiving 1412 citations. Previous affiliations of Li Li include King's College London & Harbin Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a triple-band tunable perfect terahertz metamaterial absorber (TMA) was proposed, which is composed of a planar metallic disk resonator array above a conductive ground plane separated with liquid crystal (LC) mixture.
Abstract: We report a compact triple-band tunable perfect terahertz metamaterial absorber (TMA) at the subwavelength scale of thickness, which is composed of a planar metallic disk resonator array above a conductive ground plane separated with liquid crystal (LC) mixture. The calculations of terahertz absorption spectra demonstrate triple near-unity absorption bands in the gap plasmonic resonance coupling regime. Three resonance frequencies of the absorber exhibit continuous linear-tunability as changing the refractive index of LC. Remarkably, each peak absorbance of the triple bands maintains at a level of beyond 99% in the whole tuning operation, and the absorbance can remain more than 90% over a wide range of incident angles. Our work suggests that the LC tunable absorber scheme has the potential to overcome the basic difficulty to perform simultaneously multiband spectral tuning and near-unity absorbance with wide angle of incidence and weak polarization dependence. The proposed LC-tunable multiband perfect TMA is promising in the application of biomolecular spectra-selective terahertz imaging and sensing.

76 citations

Journal ArticleDOI
06 May 2012
TL;DR: The proposed algorithm possesses robust security features such as fairly uniform distribution, high sensitivity to both keys and plainimages, almost ideal entropy, and the ability to highly de-correlate adjacent pixels in the cipherimages.
Abstract: Image encryption is a challenging task due to the significant level of sophistication achieved by forgerers and other cybercriminals. Advanced encryption methods for secure transmission, storage, and retrieval of digital images are increasingly needed for a number of military, medical, homeland security, and other applications. In this paper, we introduce a new digital image encryption algorithm. The new algorithm employs multiple chaotic systems and cryptographic primitive operations within the encryption process, which are efficiently implemented on modern processors, and adopts round keys for encryption using a chaotic map. Experiments conducted show that the proposed algorithm possesses robust security features such as fairly uniform distribution, high sensitivity to both keys and plainimages, almost ideal entropy, and the ability to highly de-correlate adjacent pixels in the cipherimages. Furthermore, it has a large key space, which greatly increases its security for image encryption applications.

68 citations

Journal ArticleDOI
TL;DR: The incident angle tuning effect on PIT spectra shows that the large modulation depth and low insertion loss can remain over a wide range of working angles and make this modulator promising in advanced terahertz communication.
Abstract: An electrically tunable terahertz (THz) modulator with large modulation depth and low insertion loss is performed with liquid crystal (LC) metamaterial. The modulation depth beyond 90% and insertion loss below 0.5 dB are achievable at normal incidence by exploiting plasmon-induced transparency (PIT) effect. The PIT spectra can be manipulated by actively controlling the interference between dipole mode and nonlocal surface-Bloch mode with LC. The incident angle tuning effect on PIT spectra shows that the large modulation depth and low insertion loss can remain over a wide range of working angles. The superior property and simplicity of design make this modulator promising in advanced terahertz communication.

60 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an ultrasensitive tunable terahertz (THz) sensor which consists of single-layer graphene-based gratings integrated with a Fabry-Perot cavity through numerical simulation.
Abstract: We propose an ultrasensitive tunable terahertz (THz) sensor which consists of single-layer graphene-based gratings integrated with a Fabry–Perot cavity through numerical simulation. The excitation of standing-wave graphene surface plasmon polaritons can make the probing field strongly confined in a gap cavity. This provides an excellent platform for ultrasensitive and high figure-of-merit (FOM) refractive index sensing at the THz band. Our full-wave electromagnetic simulations show a frequency sensitivity as high as 4.2 THz per refractive index unit and an FOM beyond 12.5 at normal incidence in the THz regime. At oblique incidence, the operation angle for effective THz sensing can be maintained as wide as 75° without inducing degeneration of the sensitivity and FOM. The sensing performance can be readily tuned by electrically controlling the chemical potential of graphene. The proposed graphene plasmonic grating scheme is a promising candidate for the development of on-chip integrated THz biochemical sensors.

58 citations

Journal ArticleDOI
TL;DR: It is shown that the frequencies of CD8(+) NKT cells in patients withEBV-associated Hodgkin's lymphoma or nasopharyngeal carcinoma are significantly lower than those in healthy EBV carriers, and immune reconstitution with EBV-induced CD8 (+) N KT cells could be a useful strategy in management of EBV -associated malignancies.
Abstract: The underlying mechanism of the protective and suppressive role of NKT cells in human tumor immunosurveillance remains to be fully elucidated. We show that the frequencies of CD8(+) NKT cells in patients with EBV-associated Hodgkin's lymphoma or nasopharyngeal carcinoma are significantly lower than those in healthy EBV carriers. These CD8(+) NKT cells in tumor patients are also functionally impaired. In human-thymus-severe combined immunodeficient (hu-thym-SCID) chimeras, EBV challenge efficiently promotes the generation of IFN-gamma-biased CD8(+) NKT cells. These cells are strongly cytotoxic, drive syngeneic T cells into a Th1 bias, and enhance T-cell cytotoxicity to EBV-associated tumor cells. Interleukin-4-biased CD4(+) NKT cells are predominately generated in unchallenged chimeras. These cells are noncytotoxic, drive syngeneic T cells into a Th2 bias, and do not affect T-cell cytotoxicity. In humanized xenogeneic tumor-transplanted hu-thym-SCID chimeras, adoptive transfer with EBV-induced CD8(+) NKT cells significantly suppresses tumorigenesis by EBV-associated malignancies. EBV-induced CD8(+) NKT cells are necessary and sufficient to enhance the T-cell immunity to EBV-associated malignancies in the hu-thym-SCID chimeras. CD4(+) NKT cells are synergetic with CD8(+) NKT cells, leading to a more pronounced T-cell antitumor response in the chimeras cotransferred with CD4(+) and CD8(+) NKT cells. Thus, immune reconstitution with EBV-induced CD8(+) NKT cells could be a useful strategy in management of EBV-associated malignancies.

53 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
TL;DR: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,*,‡ and Xiaoyuan Chen.
Abstract: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,†,‡ Paras N. Prasad,*,‡,§ and Xiaoyuan Chen* †School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China ‡Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260, United States Department of Chemistry, Korea University, Seoul 136-701, Korea Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-2281, United States

1,994 citations