scispace - formally typeset
Search or ask a question
Author

Li Ye

Bio: Li Ye is an academic researcher from Stanford University. The author has contributed to research in topics: Adipose tissue & Thermogenesis. The author has an hindex of 22, co-authored 38 publications receiving 9685 citations. Previous affiliations of Li Ye include Howard Hughes Medical Institute & Harvard University.

Papers
More filters
Journal ArticleDOI
26 Jan 2012-Nature
TL;DR: This article showed that PGC1α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin.
Abstract: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.

3,338 citations

Journal ArticleDOI
20 Jul 2012-Cell
TL;DR: Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin, providing evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes.

2,767 citations

Journal ArticleDOI
TL;DR: Protocols spanning multiple dimensions of the CLARITY workflow are described, ranging from simple, reliable and efficient lipid removal without electrophoretic instrumentation to optimized objectives and integration with light-sheet optics (CLARITY-optimized light- sheet microscopy (COLM)) for accelerating data collection from clarified samples by several orders of magnitude while maintaining or increasing quality and resolution.
Abstract: CLARITY enables the chemical transformation of intact biological tissues into a hydrogel–tissue hybrid. The hybrid samples can be interrogated using light and macromolecular labels, whilst retaining fine structure and native biological molecules.

776 citations

Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: It is shown that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or β3-agonist treatment, indicating that PRDM 16 and beige fat cells are required for the "browning" of white fat and the healthful effects of sub cutaneous adipose tissue.

716 citations

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Using a new method for the quantitative analysis of transcriptional components, the zinc-finger protein Zfp423 is identified as a factor enriched in preadipose versus non-preadipose fibroblasts and regulates Pparg expression through amplification of the BMP signalling pathway.
Abstract: The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARgamma and several other transcription factors, but the molecular basis for preadipocyte determination is not understood. Using a new method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of Pparg in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. Short hairpin RNA (shRNA)-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte Pparg expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is markedly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates Pparg expression, in part, through amplification of the BMP signalling pathway, an effect dependent on the SMAD-binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.

442 citations


Cited by
More filters
Journal ArticleDOI
26 Jan 2012-Nature
TL;DR: This article showed that PGC1α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin.
Abstract: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.

3,338 citations

Journal ArticleDOI
06 Sep 2013-Science
TL;DR: The results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology and that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids.
Abstract: How much does the microbiota influence the host's phenotype? Ridaura et al. ([1241214][1] ; see the Perspective by [ Walker and Parkhill ][2]) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. [1]: http://www.sciencemag.org/content/341/6150/1241214.full [2]: /lookup/doi/10.1126/science.1243787

2,929 citations

Journal ArticleDOI
20 Jul 2012-Cell
TL;DR: Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin, providing evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes.

2,767 citations

Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: This work provides a current view of how mitochondrial functions impinge on health and disease and identifies mitochondrial dysfunction as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders.

2,266 citations

Journal ArticleDOI
TL;DR: The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain.
Abstract: During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.

2,002 citations