scispace - formally typeset
Search or ask a question
Author

Li Zexiang

Bio: Li Zexiang is an academic researcher. The author has contributed to research in topics: Nonholonomic system & Forward kinematics. The author has an hindex of 1, co-authored 1 publications receiving 6238 citations.

Papers
More filters
Book
22 Mar 1994
TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Abstract: INTRODUCTION: Brief History. Multifingered Hands and Dextrous Manipulation. Outline of the Book. Bibliography. RIGID BODY MOTION: Rigid Body Transformations. Rotational Motion in R3. Rigid Motion in R3. Velocity of a Rigid Body. Wrenches and Reciprocal Screws. MANIPULATOR KINEMATICS: Introduction. Forward Kinematics. Inverse Kinematics. The Manipulator Jacobian. Redundant and Parallel Manipulators. ROBOT DYNAMICS AND CONTROL: Introduction. Lagrange's Equations. Dynamics of Open-Chain Manipulators. Lyapunov Stability Theory. Position Control and Trajectory Tracking. Control of Constrained Manipulators. MULTIFINGERED HAND KINEMATICS: Introduction to Grasping. Grasp Statics. Force-Closure. Grasp Planning. Grasp Constraints. Rolling Contact Kinematics. HAND DYNAMICS AND CONTROL: Lagrange's Equations with Constraints. Robot Hand Dynamics. Redundant and Nonmanipulable Robot Systems. Kinematics and Statics of Tendon Actuation. Control of Robot Hands. NONHOLONOMIC BEHAVIOR IN ROBOTIC SYSTEMS: Introduction. Controllability and Frobenius' Theorem. Examples of Nonholonomic Systems. Structure of Nonholonomic Systems. NONHOLONOMIC MOTION PLANNING: Introduction. Steering Model Control Systems Using Sinusoids. General Methods for Steering. Dynamic Finger Repositioning. FUTURE PROSPECTS: Robots in Hazardous Environments. Medical Applications for Multifingered Hands. Robots on a Small Scale: Microrobotics. APPENDICES: Lie Groups and Robot Kinematics. A Mathematica Package for Screw Calculus. Bibliography. Index Each chapter also includes a Summary, Bibliography, and Exercises

6,592 citations


Cited by
More filters
MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Book
21 Apr 2008
TL;DR: Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems.
Abstract: This book provides an introduction to the mathematics needed to model, analyze, and design feedback systems. It is an ideal textbook for undergraduate and graduate students, and is indispensable for researchers seeking a self-contained reference on control theory. Unlike most books on the subject, Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl strm and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. strm and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. They provide exercises at the end of every chapter, and an accompanying electronic solutions manual is available. Feedback Systems is a complete one-volume resource for students and researchers in mathematics, engineering, and the sciences.Covers the mathematics needed to model, analyze, and design feedback systems Serves as an introductory textbook for students and a self-contained resource for researchers Includes exercises at the end of every chapter Features an electronic solutions manual Offers techniques applicable across a range of disciplines

1,927 citations

Proceedings ArticleDOI
12 Jul 2014
TL;DR: The method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements and can achieve accuracy at the level of state of the art offline batch methods.
Abstract: We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements. The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.

1,879 citations