scispace - formally typeset
Search or ask a question
Author

Lian Feng

Bio: Lian Feng is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Environmental science & Moderate-resolution imaging spectroradiometer. The author has an hindex of 29, co-authored 97 publications receiving 2985 citations. Previous affiliations of Lian Feng include University of Science and Technology of China & University of South Florida St. Petersburg.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors studied the short and long-term characteristics of lake inundation and found significant seasonality and inter-annual variability in the monthly and annual mean inundation areas.

425 citations

Journal ArticleDOI
TL;DR: Deepwater Horizon discharge produced a surface‐oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 and a volume of 22,600 m3 (SD 5411), potentially altering its ecological impact.
Abstract: When wind speeds are 2-10 m s-1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ∼0.1 µm slicks covered an aggregated average of 775 km2. Assuming an average volume of 77.5 m3 over an 8-24 h lifespan per oil slick, the floating oil indicates a surface flux of 2.5-9.4 × 104 m3 yr-1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 (SD 5028) and a volume of 22,600 m3 (SD 5411). Peak magnitudes of oil were detected during equivalent, ∼14 day intervals around 23 May and 18 June, when wind speeds remained <5 m s-1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. The most likely causes were increased applications of dispersant and surface burning operations.

204 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used four decades of Landsat observations ranging from 1973 to 2013 to assess the wetland changes over the past few decades, which revealed significant changes in the major wetland cover types in Poyang Lake.

203 citations

Journal ArticleDOI
TL;DR: This study quantifies signal dynamic range and sensitivity parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission.
Abstract: Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded those from prelaunch sensor specifications after adjusting the input radiance to L(sub typical). The tabulated L(sub typical), L(sub max), and SNRs of the various multiband and hyperspectral sensors under the same or similar radiance input provide references to compare sensor performance in product precision and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission currently being planned by the U.S. National Aeronautics and Space Administration (NASA).

172 citations

Journal ArticleDOI
TL;DR: Remote sensing, meteorological, and hydrological observations are combined to investigate the potential influence of the Three Gorges Dam on the downstream freshwater lakes of China and appear to be linked to the TGD.
Abstract: Ever since its planning in the 1990s, the Three Gorges Dam (TGD) caused endless debate in China on its potential impacts on the environment and humans. However, to date, synoptic assessment of environmental changes and their potential linkage with the TGD is still lacking. Here, we combine remote sensing, meteorological, and hydrological observations to investigate the potential influence of the TGD on the downstream freshwater lakes. A 10 year Moderate Resolution Imaging Spectroradiometer (MODIS) time series from 2000 to 2009 revealed significantly decreasing trends (3.3 and 3.6%/year) in the inundation areas of the two largest freshwater lakes of China (Poyang Lake and Dongting Lake) downstream of the TGD since its impoundment in 2003, after which both relative humidity and surface runoff coefficient of the lakes’ drainages also dropped dramatically. These environmental changes appear to be linked to the TGD.

171 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

Book ChapterDOI
01 Jan 2008
TL;DR: The Future of Drylands (FOD) conference as mentioned in this paper is an international scientific conference dedicated to science, education, culture and communication in arid and semi-arid zones.
Abstract: On behalf of Mr. Koichiro Matsuura, Director-General of UNESCO, it is my great pleasure to welcome you all to this international scientific conference. Drylands are often considered fragile ecosystems, yet they have a remarkable resilience to stress. They are home to unique and well-adapted plant and animal species that we need to conserve. Some of the world’s greatest cultures and belief systems have originated in drylands. On the other hand, desertification and land degradation in drylands often result in poverty and cause environmental refugees to abandon their homes. These problems can only be addressed in a holistic manner, based on sound scientific research and findings. Solutions to the problems of dryland degradation need to be communicated as widely as possible through education at all levels. These are many reasons why UNESCO – within its mandate of science, education, culture and communication – took the intiative to organize this conference. And we are glad that so many partners have responded to our call. UNESCO considers this conference as its main contribution to the observance of the International Year of Deserts and Desertification in 2006. We have deliberately chosen the title ‘The Future of Drylands’ as we feel it is time to redefine our priorities for science, education and governance in the drylands based on 50 years of scientific research in arid and semi-arid zones. In fact UNESCO has one of the longest traditions, within the UN system, of addressing dryland problems from an interdisciplinary, scientific point of view. In 1955, the ‘International Arid Land Meetings’ were held in Socorro, New Mexico (USA). They were organized by the American Association for the Advancement of Science (AAAS), sponsored by UNESCO and supported by the Rockefeller Foundation. One important output of the International Arid Land Meetings was a book entitled The Future of Drylands, edited by Gilbert F. White and published in

1,199 citations

Journal ArticleDOI
16 Aug 2016-Sensors
TL;DR: The commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters, including chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygendemand (COD).
Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

554 citations

Journal ArticleDOI
TL;DR: A novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening, which shows that MND WI can enhance water bodies and suppressbuilt-up features more efficiently than NDWI.
Abstract: Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI) calculated from the green and Shortwave-Infrared (SWIR) bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can provide fine spatial resolution multispectral images. This new dataset is potentially of important significance for regional water bodies’ mapping, due to its free access and frequent revisit capabilities. It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however, wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis (PCA), Intensity Hue Saturation (IHS), High Pass Filter (HPF) and A Trous Wavelet Transform (ATWT), were applied in this study. The performance of the proposed method was assessed experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening algorithms, were compared. Three levels of results, including the sharpened images, the produced MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results showed that MNDWI can enhance water bodies and suppressbuilt-up features more efficiently than NDWI. Moreover, 10-m MNDWIs produced by all four pan-sharpening algorithms can represent more detailed spatial information of water bodies than 20-m MNDWI produced by the original image. Thus, MNDWIs at the 10-m resolution can extract more accurate water body maps than 10-m NDWI and 20-m MNDWI. In addition, although HPF can produce more accurate sharpened images and MNDWI images than the other three benchmark pan-sharpening algorithms, the ATWT algorithm leads to the best 10-m water bodies mapping results. This is no necessary positive connection between the accuracy of the sharpened MNDWI image and the map-level accuracy of the resultant water body maps.

498 citations