scispace - formally typeset
Search or ask a question
Author

Liang Che

Bio: Liang Che is an academic researcher from Hunan University. The author has contributed to research in topics: Microgrid & Electric power system. The author has an hindex of 16, co-authored 36 publications receiving 1664 citations. Previous affiliations of Liang Che include Illinois Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The simulation results verify that the proposed hierarchical coordination strategy is an effective and efficient way for coordinating microgrid flows in an islanded community microgrid, while maintaining the rated frequency and voltage with each microgrid.
Abstract: In this paper, a community microgrid with multiple ac and dc microgrids is introduced and analyzed. Individual microgrids with different frequency and voltage requirements would operate as self-controlled entities, which could also cooperate with neighboring microgrids for providing back-up operations in the community microgrid. A hierarchical coordination strategy with primary, secondary, and tertiary coordination is proposed for the economic operation of an islanded community microgrid. The hierarchical strategy is also applied to a grid-connected community microgrid and the results are discussed. The simulation results verify that the proposed hierarchical coordination strategy is an effective and efficient way for coordinating microgrid flows in an islanded community microgrid, while maintaining the rated frequency and voltage with each microgrid. The simulation results also demonstrate the economic operation of a grid-connected community microgrid in which individual microgrids operate as autonomous agents, while satisfying the community objectives.

304 citations

Journal ArticleDOI
TL;DR: Case studies in which an existing microgrid at the Illinois Institute of Technology (IIT) is operated as a dc microgrid are provided and the results for each case are compared with the ac model, which demonstrate that the proposed coordinated dc strategy for the optimal operation of DERs is an effective way of ensuring the resilient response to emergencies and its economic operation at steady state.
Abstract: The additional deployment of distributed energy resources (DERs) has attracted further attention to dc microgrid applications. The objective of the study is to discuss the possibilities and the merits of adopting a dc control system for enhancing the economics and the resilient operation of a dc microgrid, and to test the proposed hierarchical control strategy that applies to a dc microgrid. This paper provides case studies in which an existing microgrid at the Illinois Institute of Technology (IIT) is operated as a dc microgrid and the results for each case are compared with the ac model. The structure, components, and control strategies of IIT dc microgrids are discussed and the economic operation of a grid-connected dc microgrid through tertiary control, as well as islanding, load restoration, and resynchronization of the dc microgrid are simulated. The dc microgrid simulation results are compared with those of an ac microgrid, which demonstrate that the proposed coordinated dc strategy for the optimal operation of DERs is an effective way of ensuring the resilient response of dc microgrid to emergencies and its economic operation at steady state.

282 citations

Journal ArticleDOI
TL;DR: The numerical results demonstrate that the proposed interconnection planning methodology will determine an optimal topology accurately and efficiently for a cluster of microgrids, and show that the suggested adaptive planning methodology can easily be applied to practical microgrid applications.
Abstract: The optimal planning of the interconnected network of multimicrogrids is discussed in this paper. The interconnection planning will enhance the reliability and the economic operation of a community of microgrids. The proposed approach will apply a probabilistic minimal cut-set-based iterative methodology for the optimal planning of interconnection among microgrids with variable renewable energy sources. The optimal planning takes into account various factors including the economics, reliability, and variability of renewables, network- and resource-based uncertainties, and adaptability to accommodate the prevailing operating concerns. A clustering-based method is considered for analyzing the variable data concerning the potential deployment of renewable energy in microgrids. The proposed interconnection planning methodology is applied to a six-microgrid system and the planning results are discussed. The numerical results demonstrate that the proposed interconnection planning methodology will determine an optimal topology accurately and efficiently for a cluster of microgrids, and show that the proposed adaptive planning methodology can easily be applied to practical microgrid applications.

221 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlighted the importance of reinforcing the electricity infrastructure and the need for further investments in more comprehensive data communication and distribution management systems, distributed energy resources, energy storage facilities, additional automation, and further migration toward decentralized operations for the largely centralized power grid.
Abstract: Electricity infrastructure is the cornerstone of every industrialized nation in the world. As the utility grid ages and the demand for electricity grows, the impact of major interruptions of the electricity infrastructure will be more intense. Costly power outages throughout the world caused by natural disasters such as floods and hurricanes have highlighted the importance of reinforcing the electricity infrastructure. A recent study conducted for the U.S. Department of Energy indicated that sustained power interruptions (those lasting more than 5 min) in the United States incur costs of more than US$26 billion dollars annually. Power outages caused by Hurricanes Sandy and Katrina in the United States threw into notice the crucial role of smart grid technology and the need for further investments in more comprehensive data communication and distribution management systems, distributed energy resources, energy storage facilities, additional automation, and further migration toward decentralized operations for the largely centralized power grid.

220 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a distributed energy resources (DER) integration to reduce transmission losses and enhance the operation reliability of distribution systems, where DER penetrations representing bidirectional power flows and topology-dependent fault currents could affect protection devices, cause danger to the maintenance personnel, and result in uncontrollable undervoltage and frequency.
Abstract: Distributed energy resources (DERs) offer on-site generation at consumption points, which are expected to change the conventional concept of central power generation. DER integration reduces transmission losses and enhances the operation reliability of distribution systems. However, distribution systems are traditionally designed as passive networks in which large DER penetrations representing bidirectional power flows and topology-dependent fault currents could affect protection devices, cause danger to the maintenance personnel, and result in uncontrollable under-/overvoltage and frequency. IEEE Standard 1547 requires DER units to stop energizing the distribution system when the system is de-energized due to faults.

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of control strategies, stability analysis, and stabilization techniques for dc microgrids is presented, where overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level.
Abstract: This paper presents a review of control strategies, stability analysis, and stabilization techniques for dc microgrids (MGs). Overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level. As opposed to local control, which relies only on local measurements, some line of communication between units needs to be made available in order to achieve the coordinated control. Depending on the communication method, three basic coordinated control strategies can be distinguished, i.e., decentralized, centralized, and distributed control. Decentralized control can be regarded as an extension of the local control since it is also based exclusively on local measurements. In contrast, centralized and distributed control strategies rely on digital communication technologies. A number of approaches using these three coordinated control strategies to achieve various control objectives are reviewed in this paper. Moreover, properties of dc MG dynamics and stability are discussed. This paper illustrates that tightly regulated point-of-load converters tend to reduce the stability margins of the system since they introduce negative impedances, which can potentially oscillate with lightly damped power supply input filters. It is also demonstrated that how the stability of the whole system is defined by the relationship of the source and load impedances, referred to as the minor loop gain. Several prominent specifications for the minor loop gain are reviewed. Finally, a number of active stabilization techniques are presented.

1,131 citations

Journal ArticleDOI
TL;DR: In this article, a review of microgrid drivers, real-world applications, challenges, and future prospects is presented, along with a multi-disciplinary portrait of today's micro-grid drivers.
Abstract: Microgrids are now emerging from lab benches and pilot demonstration sites into commercial markets, driven by technological improvements, falling costs, a proven track record, and growing recognition of their benefits. They are being used to improve reliability and resilience of electrical grids, to manage the addition of distributed clean energy resources like wind and solar photovoltaic (PV) generation to reduce fossil fuel emissions, and to provide electricity in areas not served by centralized electrical infrastructure. This review article (1) explains what a microgrid is, and (2) provides a multi-disciplinary portrait of today's microgrid drivers, real-world applications, challenges, and future prospects.

884 citations

Journal ArticleDOI
TL;DR: This paper presents a review of issues concerning microgrid issues and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, micro grid operation and control, micro grids clusters, and protection and communications issues.
Abstract: The significant benefits associated with microgrids have led to vast efforts to expand their penetration in electric power systems. Although their deployment is rapidly growing, there are still many challenges to efficiently design, control, and operate microgrids when connected to the grid, and also when in islanded mode, where extensive research activities are underway to tackle these issues. It is necessary to have an across-the-board view of the microgrid integration in power systems. This paper presents a review of issues concerning microgrids and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, microgrid operation and control, microgrid clusters, and protection and communications issues.

875 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consolidate and review the progress of the research field towards methods and tools of forecasting natural disaster related power system disturbances, hardening and pre-storm operations, and restoration models.
Abstract: Natural disasters can cause large blackouts. Research into natural disaster impacts on electric power systems is emerging to understand the causes of the blackouts, explore ways to prepare and harden the grid, and increase the resilience of the power grid under such events. At the same time, new technologies such as smart grid, micro grid, and wide area monitoring applications could increase situational awareness as well as enable faster restoration of the system. This paper aims to consolidate and review the progress of the research field towards methods and tools of forecasting natural disaster related power system disturbances, hardening and pre-storm operations, and restoration models. Challenges and future research opportunities are also presented in the paper.

729 citations

Journal ArticleDOI
TL;DR: A novel distribution system operational approach by forming multiple microgrids energized by DG from the radial distribution system in real-time operations to restore critical loads from the power outage to maximize the critical loads to be picked up.
Abstract: Microgrids with distributed generation (DG) provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by DG from the radial distribution system in real-time operations to restore critical loads from the power outage. Specifically, a mixed-integer linear program is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem by controlling the ON/OFF status of the remotely controlled switch devices and DG. A distributed multiagent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.

678 citations