scispace - formally typeset
Search or ask a question
Author

Liang Chen

Other affiliations: Ottawa University
Bio: Liang Chen is an academic researcher from University of Ottawa. The author has contributed to research in topics: Brillouin scattering & Brillouin zone. The author has an hindex of 43, co-authored 338 publications receiving 7403 citations. Previous affiliations of Liang Chen include Ottawa University.


Papers
More filters
Journal ArticleDOI
26 Jun 2012-Sensors
TL;DR: A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Abstract: Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

1,011 citations

Journal ArticleDOI
TL;DR: In this paper, a distributed vibration sensor was developed by using heterodyne detection and signal processing of moving averaging and moving differential for the phase optical time domain reflectometry system for detecting pencil break vibration.
Abstract: We developed a distributed vibration sensor by using heterodyne detection and signal processing of moving averaging and moving differential for the phase optical time domain reflectometry system. The broadband acoustic frequency components generated by pencil-break vibration have been measured and identified in location by our distributed vibration sensor for the first time. Pencil break measurement is a standard technique to emulate the acoustic emission of cracks in concrete or steel bridges for early crack identification. The spatial resolution is 5m and the highest frequency response is 1 kHz, which is limited by the trigger frequency of data acquisition card. This new sensing system can be used for vibration detection of health monitoring of various civil structures as well as any dynamic monitoring requirement.

576 citations

Journal ArticleDOI
07 Apr 2011-Sensors
TL;DR: The progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement is reviewed.
Abstract: Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

491 citations

Journal ArticleDOI
TL;DR: A differential pulse-width pair Brillouin optical time domain analysis (DPP-BOTDA) for centimeter spatial resolution sensing using meter equivalent pulses is proposed.
Abstract: A differential pulse-width pair Brillouin optical time domain analysis (DPP-BOTDA) for centimeter spatial resolution sensing using meter equivalent pulses is proposed. This scheme uses the time domain waveform subtraction at the same scanned Brillouin frequency obtained from pulse lights with different pulse-widths (e.g. 50ns and 49ns) to form the differential Brillouin gain spectrum (BGS) at each fiber location. The spatial resolution is defined by the average of the rise and fall time equivalent fiber length for a small stress section rather than the pulse-width difference equivalent length. The spatial resolution of 0.18m for the 50/49ns pulse pair and 0.15m for 20/19ns pulse pair over 1km sensing length with Brillouin frequency shift accuracy of 2.6MHz are demonstrated.

376 citations

Journal ArticleDOI
TL;DR: A new wavelet shrinkage approach allows the distributed vibration measurement of 20-Hz and 8-kHz events to be detected over 1-km sensing length with a 5-ns optical pulse, which is equivalent to 50-cm spatial resolution using the single-mode sensing fiber.
Abstract: This letter proposed and demonstrated a wavelet technique to reduce the time domain noise to get submeter spatial resolution in the distributed vibration sensor based on phase optical time domain reflectometry. A new wavelet shrinkage approach allows the distributed vibration measurement of 20-Hz and 8-kHz events to be detected over 1-km sensing length with a 5-ns optical pulse, which is equivalent to 50-cm spatial resolution using the single-mode sensing fiber.

250 citations


Cited by
More filters
Journal ArticleDOI
26 Jun 2012-Sensors
TL;DR: A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Abstract: Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

1,011 citations

Book ChapterDOI
27 Jan 2010

878 citations

Patent
14 Aug 2008
TL;DR: In this article, Bragg sensor optical fibers are coupled to an elongated instrument body and include a fiber core having one or more Bragg gratings, and a controller is configured to initiate various actions in response thereto.
Abstract: Robotic medical instrument systems and associated methods utilizing an optical fiber sensors such as Bragg sensor optical fibers. In one configuration, an optical fiber is coupled to an elongate instrument body and includes a fiber core having one or more Bragg gratings. A controller is configured to initiate various actions in response thereto. For example, a controller may generate and display a graphical representation of the instrument body and depict one or more position and/or orientation variables thereof, or adjust motors of an instrument driver to reposition the catheter or another instrument. Optical fibers having Bragg gratings may also be utilized with other system components including a plurality of working instruments that are positioned within a sheath lumen, an instrument driver, localization sensors, and/or an image capture device, and may also be coupled to a patient's body or associated structure that stabilizes the body.

785 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial introduction, a comprehensive background on this subject and also a forecast of the future of OFS for SHM, including those from the renewable energy, transportation, civil engineering and the oil and gas industry sectors.
Abstract: Structural Health Monitoring (SHM) can be understood as the integration of sensing and intelligence to enable the structure loading and damage-provoking conditions to be recorded, analyzed, localized, and predicted in such a way that nondestructive testing becomes an integral part of them. In addition, SHM systems can include actuation devices to take proper reaction or correction actions. SHM sensing requirements are very well suited for the application of optical fiber sensors (OFS), in particular, to provide integrated, quasi-distributed or fully distributed technologies. In this tutorial, after a brief introduction of the basic SHM concepts, the main fiber optic techniques available for this application are reviewed, emphasizing the four most successful ones. Then, several examples of the use of OFS in real structures are also addressed, including those from the renewable energy, transportation, civil engineering and the oil and gas industry sectors. Finally, the most relevant current technical challenges and the key sector markets are identified. This paper provides a tutorial introduction, a comprehensive background on this subject and also a forecast of the future of OFS for SHM. In addition, some of the challenges to be faced in the near future are addressed.

609 citations

Journal Article
TL;DR: In this article, a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample is presented.
Abstract: We present a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample. The device is insensitive to the rotation of the sample in the plane perpendicular to ranging. Phase measurement accuracy is ±0.86°, but the reflectometer can distinguish local variations in birefringence as small as 0.05° with a distance resolution of 10.8 μm and a dynamic range of 90 dB. Birefringence-sensitive ranging in a wave plate, an electro-optic modulator, and a calf coronary artery is demonstrated.

601 citations