scispace - formally typeset
Search or ask a question
Author

Liang Cheng

Other affiliations: Harbin Institute of Technology
Bio: Liang Cheng is an academic researcher from Harbin Medical University. The author has contributed to research in topics: Mendelian randomization & Disease Ontology. The author has an hindex of 29, co-authored 81 publications receiving 2664 citations. Previous affiliations of Liang Cheng include Harbin Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This work retrieved all new lncRNA–target relationships from papers published from 1 August 2014 to 30 April 2018 and RNA-seq datasets before and after knockdown or overexpression of a specific lnc RNA.
Abstract: Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression, and a growing number of researchers have focused on the identification of target genes of lncRNAs. However, no online repository is available to collect the information on target genes regulated by lncRNAs. To make it convenient for researchers to know what genes are regulated by a lncRNA of interest, we developed a database named lncRNA2Target to provide a comprehensive resource of lncRNA target genes in 2015. To update the database this year, we retrieved all new lncRNA-target relationships from papers published from 1 August 2014 to 30 April 2018 and RNA-seq datasets before and after knockdown or overexpression of a specific lncRNA. LncRNA2Target database v2.0 provides a web interface through which its users can search for the targets of a particular lncRNA or for the lncRNAs that target a particular gene, and is freely accessible at http://123.59.132.21/lncrna2target.

264 citations

Journal ArticleDOI
TL;DR: An integrative computational method was used to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, and constructed global and progression-related lncRNA-associated ceRNA networks (LCeNETs) in ovarian cancer (OvCa) based on “ceRNA hypothesis”.
Abstract: Accumulating evidence has underscored the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer initiation and progression. In this study, we used an integrative computational method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, and constructed global and progression-related lncRNA-associated ceRNA networks (LCeNETs) in ovarian cancer (OvCa) based on "ceRNA hypothesis". The constructed LCeNETs exhibited small world, modular architecture and high functional specificity for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates associated with stage progression in OvCa using ceRNA-network driven method. Finally, we developed a ten-lncRNA signature which classified patients into high- and low-risk subgroups with significantly different survival outcomes. Our study will provide novel insight for better understanding of ceRNA-mediated gene regulation in progression of OvCa and facilitate the identification of novel diagnostic and therapeutic lncRNA ceRNAs for OvCa.

206 citations

Journal ArticleDOI
TL;DR: DincRNA is a comprehensive web-based bioinformatics toolkit to elucidate the entangled relationships among diseases and non-coding RNAs (ncRNAs) from the perspective of disease similarity, and implemented all of the above eight algorithms based on DO and disease-related genes.
Abstract: Summary DincRNA aims to provide a comprehensive web-based bioinformatics toolkit to elucidate the entangled relationships among diseases and non-coding RNAs (ncRNAs) from the perspective of disease similarity. The quantitative way to illustrate relationships of pair-wise diseases always depends on their molecular mechanisms, and structures of the directed acyclic graph of Disease Ontology (DO). Corresponding methods for calculating similarity of pair-wise diseases involve Resnik's, Lin's, Wang's, PSB and SemFunSim methods. Recently, disease similarity was validated suitable for calculating functional similarities of ncRNAs and prioritizing ncRNA-disease pairs, and it has been widely applied for predicting the ncRNA function due to the limited biological knowledge from wet lab experiments of these RNAs. For this purpose, a large number of algorithms and priori knowledge need to be integrated. e.g. 'pair-wise best, pairs-average' (PBPA) and 'pair-wise all, pairs-maximum' (PAPM) methods for calculating functional similarities of ncRNAs, and random walk with restart (RWR) method for prioritizing ncRNA-disease pairs. To facilitate the exploration of disease associations and ncRNA function, DincRNA implemented all of the above eight algorithms based on DO and disease-related genes. Currently, it provides the function to query disease similarity scores, miRNA and lncRNA functional similarity scores, and the prioritization scores of lncRNA-disease and miRNA-disease pairs. Availability and implementation http://bio-annotation.cn:18080/DincRNAClient/. Contact biofomeng@hotmail.com or qhjiang@hit.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.

189 citations

Journal ArticleDOI
Meng Zhou1, Zhaoyue Zhang1, Hengqiang Zhao1, Siqi Bao1, Liang Cheng1, Jie Sun1 
TL;DR: The identified lncRNAs had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation and multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates.
Abstract: Recent studies have demonstrated the utility and superiority of long non-coding RNAs (lncRNAs) as novel biomarkers for cancer diagnosis, prognosis, and therapy In the present study, the prognostic value of lncRNAs in glioblastoma multiforme was systematically investigated by performing a genome-wide analysis of lncRNA expression profiles in 419 glioblastoma patients from The Cancer Genome Atlas (TCGA) project Using survival analysis and Cox regression model, we identified a set of six lncRNAs (AC0050135, UBE2R2-AS1, ENTPD1-AS1, RP11-89C212, AC0731156, and XLOC_004803) demonstrating an ability to stratify patients into high- and low-risk groups with significantly different survival (median 0899 vs 1611 years, p = 387e−09, log-rank test) in the training cohort The six-lncRNA signature was successfully validated on independent test cohort of 219 patients with glioblastoma, and it revealed superior performance for risk stratification with respect to existing lncRNA-related signatures Multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates Further in silico functional analysis suggested that the six-lncRNA signature may be involved in the immune-related biological processes and pathways which are very well known in the context of glioblastoma tumorigenesis The identified lncRNA signature had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation

164 citations

Journal ArticleDOI
Meng Zhou1, Hengqiang Zhao1, Wanying Xu1, Siqi Bao1, Liang Cheng1, Jie Sun1 
TL;DR: This study uncovered differentiated lncRNA expression pattern between GCB and ABC DLBCL and identified a 17-lncRNA signature for subtype classification and prognosis prediction.
Abstract: Diffuse large B-cell lymphoma (DLBCL) is an aggressive and complex disease characterized by wide clinical, phenotypic and molecular heterogeneities. The expression pattern and clinical implication of long non-coding RNAs (lncRNAs) between germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes in DLBCL remain unclear. This study aims to determine whether lncRNA can serve as predictive biomarkers for subtype classification and prognosis in DLBCL. Genome-wide comparative analysis of lncRNA expression profiles were performed in a large number of DLBCL patients from Gene Expression Omnibus (GEO), including GSE31312 cohort (N = 426), GSE10846 (N = 350) cohort and GSE4475 cohort (N = 129). Novel lncRNA biomarkers associated with clinically molecular subtype and prognosis were identified in the discovery cohort using differential expression analyses and weighted voting algorithm. The predictive value of the lncRNA signature was then assessed in two independent cohorts. The functional implication of lncRNA signature was also analyzed by integrative analysis of lncRNA and mRNA. Seventeen of the 156 differentially expressed lncRNAs between GCB and ABC subtypes were identified as candidate biomarkers and integrated into form a lncRNA-based signature (termed SubSigLnc-17) which was able to discriminate between GCB and ABC subtypes with AUC of 0.974, specificity of 89.6% and sensitivity of 92.5%. Furthermore, subgroups of patients characterized by the SubSigLnc-17 demonstrated significantly different clinical outcome. The reproducible predictive power of SubSigLnc-17 in subtype classification and prognosis was successfully validated in the internal validation cohort and another two independent patient cohorts. Integrative analysis of lncRNA-mRNA suggested that these candidate lncRNA biomarkers were mainly related to immune-associated processes, such as T cell activation, leukocyte activation, lymphocyte activation and Chemokine signaling pathway. Our study uncovered differentiated lncRNA expression pattern between GCB and ABC DLBCL and identified a 17-lncRNA signature for subtype classification and prognosis prediction. With further prospective validation, our study will improve the understanding of underlying molecular heterogeneities in DLBCL and provide candidate lncRNA biomarkers in DLBCL classification and prognosis.

159 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations

Journal Article
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.

1,323 citations

01 Jan 2013
TL;DR: In this paper, the authors present methods for the meta-analysis of prevalence of multiple sclerosis using logit and double arcsine transformations to stabilise the variance and propose solutions to the problems that arise.
Abstract: Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.

725 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations