scispace - formally typeset
Search or ask a question
Author

Liang-Dong Guo

Bio: Liang-Dong Guo is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Biodiversity & Species richness. The author has an hindex of 38, co-authored 134 publications receiving 9949 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations

Journal ArticleDOI
Conrad L. Schoch1, Barbara Robbertse1, Vincent Robert2, Duong Vu2, Gianluigi Cardinali3, Laszlo Irinyi4, Wieland Meyer4, R. Henrik Nilsson5, Karen W. Hughes6, Andrew N. Miller7, Paul M. Kirk8, Kessy Abarenkov9, M. Catherine Aime10, Hiran A. Ariyawansa11, Martin I. Bidartondo8, Teun Boekhout2, Bart Buyck, Qing Cai12, Jie Chen11, Ana Crespo13, Pedro W. Crous2, Ulrike Damm14, Z. Wilhelm de Beer15, Bryn T. M. Dentinger8, Pradeep K. Divakar13, Margarita Dueñas16, Nicolas Feau17, Katerina Fliegerova18, Miguel A. García19, Zai-Wei Ge12, Gareth W. Griffith20, Johannes Z. Groenewald2, Marizeth Groenewald2, Martin Grube21, Marieka Gryzenhout22, Cécile Gueidan23, Liang-Dong Guo, Sarah Hambleton, Richard C. Hamelin17, Karen Hansen24, Valérie Hofstetter, Seung-Beom Hong25, Jos Houbraken2, Kevin D. Hyde11, Patrik Inderbitzin26, Peter R. Johnston27, Samantha C. Karunarathna11, Urmas Kõljalg9, Gábor M. Kovács28, Gábor M. Kovács29, Ekaphan Kraichak30, Krisztina Krizsán31, Cletus P. Kurtzman32, Karl-Henrik Larsson14, Steven D. Leavitt30, Peter M. Letcher33, Kare Liimatainen34, Jian-Kui Liu11, D. Jean Lodge32, Janet Jennifer Luangsa-ard35, H. Thorsten Lumbsch30, Sajeewa S. N. Maharachchikumbura11, Dimuthu S. Manamgoda11, María P. Martín16, Andrew M. Minnis36, Jean-Marc Moncalvo19, Giuseppina Mulè37, Karen K. Nakasone, Tuula Niskanen34, Ibai Olariaga24, Tamás Papp31, Tamás Petkovits31, Raquel Pino-Bodas34, Martha J. Powell33, Huzefa A. Raja38, Dirk Redecker, Jullie M. Sarmiento-Ramírez16, Keith A. Seifert, Bhushan Shrestha39, Soili Stenroos34, B. Stielow2, Sung-Oui Suh, Kazuaki Tanaka40, Leho Tedersoo9, M. Teresa Telleria16, Dhanushka Udayanga11, Wendy A. Untereiner41, Javier Diéguez Uribeondo16, Krishna V. Subbarao26, Csaba Vágvölgyi31, Cobus M. Visagie2, Kerstin Voigt42, Donald M. Walker43, Bevan S. Weir27, Michael Weiß44, Nalin N. Wijayawardene11, Michael J. Wingfield15, Jianping Xu45, Zhu L. Yang12, Ning Zhang46, Wen Ying Zhuang, Scott Federhen1 
30 Jun 2014-Database
TL;DR: A set of standards and protocols are proposed to improve the data quality of new sequences, and it is suggested how type and other reference sequences can be used to improve identification of Fungi.
Abstract: DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.

360 citations

Journal ArticleDOI
05 Oct 2018-Science
TL;DR: The first results from a large biodiversity experiment in a subtropical forest in China suggest strong positive effects of tree diversity on forest productivity and carbon accumulation, and encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
Abstract: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.

359 citations

Journal ArticleDOI
David L. Hawksworth1, David L. Hawksworth2, Pedro W. Crous3, Scott A. Redhead, Don R. Reynolds4, Robert A. Samson3, Keith A. Seifert, John W. Taylor4, Michael J. Wingfield5, Özlem Abaci6, Catherine Aime7, Ahmet Asan8, Feng-Yan Bai, Z. Wilhelm de Beer5, Dominik Begerow9, Derya Berikten10, Teun Boekhout3, Peter K. Buchanan11, Treena I. Burgess12, Walter Buzina13, Lei Cai, Paul F. Cannon14, J. Leland Crane15, Ulrike Damm3, Heide Marie Daniel16, Anne D. van Diepeningen3, Irina S. Druzhinina17, Paul S. Dyer18, Ursula Eberhardt3, Jack W. Fell19, Jens Christian Frisvad20, David M. Geiser21, József Geml22, Chirlei Glienke23, Tom Gräfenhan24, Johannes Z. Groenewald3, Marizeth Groenewald3, Johannes de Gruyter25, Eveline Guého-Kellermann, Liang-Dong Guo, David S. Hibbett26, Seung-Beom Hong27, G. Sybren de Hoog2, Jos Houbraken3, Sabine M. Huhndorf28, Kevin D. Hyde, Ahmed Ismail3, Peter R. Johnston11, Duygu Göksay Kadaifciler29, Paul M. Kirk30, Urmas Kõljalg31, Cletus P. Kurtzman32, Paul Emile Lagneau, C. André Lévesque, Xingzhong Liu, Lorenzo Lombard3, Wieland Meyer15, Andrew N. Miller33, David W. Minter, Mohammad Javad Najafzadeh34, Lorelei L. Norvell, Svetlana Ozerskaya35, Rasime Ozic10, Shaun R. Pennycook11, Stephen W. Peterson32, Olga Vinnere Pettersson36, W. Quaedvlieg3, Vincent Robert3, Constantino Ruibal2, Johan Schnürer36, Hans Josef Schroers, Roger G. Shivas, Bernard Slippers5, Henk Spierenburg3, Masako Takashima, Evrim Taskin37, Marco Thines38, Ulf Thrane20, Alev Haliki Uztan6, Marcel van Raak25, János Varga39, Aida Vasco40, Gerard J.M. Verkley3, S.I.R. Videira3, Ronald P. de Vries3, Bevan S. Weir11, Neriman Yilmaz3, Andrey Yurkov9, Ning Zhang 
01 Jun 2011
TL;DR: The Amsterdam Declaration on Fungal Nomenclature recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered.
Abstract: The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.

328 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: Increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease.
Abstract: Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

7,032 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type, and the term ‘species hypothesis’ (SH) is introduced for the taxa discovered in clustering on different similarity thresholds.
Abstract: The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.

2,605 citations