scispace - formally typeset
Search or ask a question
Author

Libby J. Marshall

Bio: Libby J. Marshall is an academic researcher from University of Glasgow. The author has contributed to research in topics: Materials science & Medicine. The author has an hindex of 1, co-authored 3 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the gel-to-crystal transition depends on the final pH of the medium which was controlled by varying the amount of glucon-δ-lactone (GdL) added.
Abstract: Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.

9 citations

Journal ArticleDOI
TL;DR: This work shows that a magnetic field can be used to control the mechanical properties of the gels, but what is probably most exciting is that the gelling component aligns in a magnetic Field and so results in anisotropic crystals being formed.
Abstract: Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.

9 citations

Journal ArticleDOI
TL;DR: In this article, the effect of cross-linking depends on the position of the lysine residue in the peptide chain, the concentration of gelator and the conditions under which crosslinking takes place.
Abstract: Exposure of lysine-containing peptide-based gelators to the cross-linking agent glutaraldehyde allows tuning of gel mechanical properties. The effect of cross-linking depends on the position of the lysine residue in the peptide chain, the concentration of gelator and the conditions under which cross-linking takes place. Through control of these factors, cross-linking leads to increased gel strength.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a two-component supramolecular system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the geling component alone.
Abstract: Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two‐component system is used, showing that a non‐gelling component modifies the assembly of the gelling component, allowing access to co‐assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single‐component system. Furthermore, the non‐gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.

2 citations

Journal ArticleDOI
28 Nov 2022-ACS Nano
TL;DR: In this paper , a simple dipeptide building block is treated as a polyelectrolyte and used polymer physics approaches to explain the self-assembly over a wide concentration range, enabling us to prepare interesting analogues to threads and webs, as well as films that lose order on heating and "noodles" which change dimensions on heating.
Abstract: Hierarchical self-assembly is an effective means of preparing useful materials. However, control over assembly across length scales is a difficult challenge, often confounded by the perceived need to redesign the molecular building blocks when new material properties are needed. Here, we show that we can treat a simple dipeptide building block as a polyelectrolyte and use polymer physics approaches to explain the self-assembly over a wide concentration range. This allows us to determine how entangled the system is and therefore how it might be best processed, enabling us to prepare interesting analogues to threads and webs, as well as films that lose order on heating and “noodles” which change dimensions on heating, showing that we can transfer micellar-level changes to bulk properties all from a single building block.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There are still significant gaps in understanding of low molecular weight gels and challenges that need to be addressed if these systems are to be able to fully design such systems.
Abstract: Low molecular weight gels are formed by the self-assembly of small molecules into anisotropic structures that form a network capable of immobilizing the solvent. Such gels are common, with a huge number of different examples existing, and they have many applications. However, there are still significant gaps in our understanding of these systems and challenges that need to be addressed if we are to be able to fully design such systems. Here, a number of these challenges are discussed.

23 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the co-aggregation of different aromatic short peptides containing Fmoc- (fluorenylmethyloxycarbonyl-) and Nap- (2-(naphthalen-2-yloxy)acetyl) groups having also different chirality.

9 citations

Journal ArticleDOI
23 Jan 2023-Gels
TL;DR: In this paper, a review of the current research status of hydrogels as anti-adhesion barriers is summarized, the character of the hydrogel in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Abstract: Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.

8 citations

Journal ArticleDOI
TL;DR: In this paper , a simple non-equilibrium reaction cycle is coupled to crystallization, resulting in an on-state with assemblies and an off-state without, which can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale.
Abstract: The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system's abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together.

8 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss the advantages of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) for the analysis of low molecular weight gels.
Abstract: The material properties of a gel are determined by the underpinning network that immobilises the solvent. When gels are formed by the self-assembly of small molecules into a so-called low molecular weight gel, the network is the result of the molecules forming one-dimensional objects such as fibres or nanotubes which entangle or otherwise cross-link to form a three-dimensional network. Characterising the one-dimensional objects and the network is difficult. Many conventional techniques rely on drying to probe the network, which often leads to artefacts. An effective tool to probe the gel in the solvated state is small angle scattering. Both small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) can be used. Here, we discuss these approaches and provide a tutorial review to describe how these approaches work, what opportunities there are and how the data treatment should be approached. We aim to show the power of this approach and provide enabling information to make them accessible to the non-specialist.

7 citations