scispace - formally typeset
Search or ask a question
Author

Lidan Wang

Bio: Lidan Wang is an academic researcher from Southwest University. The author has contributed to research in topics: Memristor & Chaotic. The author has an hindex of 30, co-authored 183 publications receiving 2945 citations. Previous affiliations of Lidan Wang include Chongqing University & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: A compact CNN model based on memristors is presented along with its performance analysis and applications and the proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs.
Abstract: Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current–voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.

233 citations

Journal ArticleDOI
02 Nov 2015-Sensors
TL;DR: The object of this review is to provide a summary of the various feature extraction methods used in E-noses in recent years, as well as to give some suggestions and new inspiration to propose more effective features extraction methods for the development of E-Nose technology.
Abstract: Many research groups in academia and industry are focusing on the performance improvement of electronic nose (E-nose) systems mainly involving three optimizations, which are sensitive material selection and sensor array optimization, enhanced feature extraction methods and pattern recognition method selection. For a specific application, the feature extraction method is a basic part of these three optimizations and a key point in E-nose system performance improvement. The aim of a feature extraction method is to extract robust information from the sensor response with less redundancy to ensure the effectiveness of the subsequent pattern recognition algorithm. Many kinds of feature extraction methods have been used in E-nose applications, such as extraction from the original response curves, curve fitting parameters, transform domains, phase space (PS) and dynamic moments (DM), parallel factor analysis (PARAFAC), energy vector (EV), power density spectrum (PSD), window time slicing (WTS) and moving window time slicing (MWTS), moving window function capture (MWFC), etc. The object of this review is to provide a summary of the various feature extraction methods used in E-noses in recent years, as well as to give some suggestions and new inspiration to propose more effective feature extraction methods for the development of E-nose technology.

200 citations

Journal ArticleDOI
TL;DR: Increased hole extraction efficiency and restrained erosion of ITO by PEDOT PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.
Abstract: A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by PEDOT:PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.

199 citations

Journal ArticleDOI
TL;DR: The integration of CsPbX3 QDs and photocatalysis provides a new insight for the design of new photocatalysts and environmentally friendly applications.
Abstract: Herein, we report the performance of CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) for photocatalytic degradation of organic dyes. The photocatalytic performance of CsPbX3 QDs was characterized by UV-vis absorption spectra and ESI-MS, which evaluated their ability of degrading methyl orange (MO) solution under visible light irradiation. Interestingly, both CsPbCl3 and CsPbBr3 QDs show excellent photocatalytic activities, which can decompose the MO solution into a colorless solution within 100 min. This study demonstrates the potential of CsPbX3 QDs in the degradation of organic dyes and environmentally friendly applications. Moreover, the integration of CsPbX3 QDs and photocatalysis provides a new insight for the design of new photocatalysts.

153 citations

Journal ArticleDOI
TL;DR: A novel complex-valued memristive recurrent neural network (CVMRNN) is established to study its stability through the existence, uniqueness, and exponential stability of the equilibrium point for CVMRNNs by means of LaTeX-matrix and Lyapunov function.
Abstract: In this brief, we establish a novel complex-valued memristive recurrent neural network (CVMRNN) to study its stability. As a generalization of real-valued memristive neural networks, CVMRNN can be separated into real and imaginary parts. By means of $M$ -matrix and Lyapunov function, the existence, uniqueness, and exponential stability of the equilibrium point for CVMRNNs are investigated, and sufficient conditions are presented. Finally, the effectiveness of obtained results is illustrated by two numerical examples.

143 citations


Cited by
More filters
Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations

01 Jan 2015
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications, and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book’s practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.

1,102 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress of synaptic electronics is reviewed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing.
Abstract: In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

993 citations