scispace - formally typeset
Search or ask a question

Showing papers by "Lidia Morawska published in 2015"


Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations


Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations


Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as mentioned in this paper provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

1,656 citations


Journal ArticleDOI
TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.

591 citations


Journal ArticleDOI
TL;DR: In this paper, three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia) were systematically studied three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analyzed.
Abstract: . Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that – in high-insolation urban regions at least – new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1–2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44–63% of the time), "Nucleation" (14–19%) and "Background pollution and Specific cases" (7–22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1–4 h, reaching sizes of 30–40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

140 citations


01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

136 citations


Journal ArticleDOI
TL;DR: The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies.

108 citations


01 Jan 2015
TL;DR: The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies.
Abstract: Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

80 citations


Journal ArticleDOI
TL;DR: In this article, a risk assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles, which provided a more accurate estimate than the conventional scheme.

66 citations


Journal ArticleDOI
02 Nov 2015
TL;DR: In this article, the indoor air quality in six naturally ventilated classrooms of three schools in Cassino (Italy) was measured within school hours during the winter and spring season, and the authors found that the concentrations of indoor particle number were influenced by the concentrations in the outdoors.
Abstract: Characterization of indoor air quality in school classrooms is crucial to children’s health and performance. The present study was undertaken to characterize the indoor air quality in six naturally ventilated classrooms of three schools in Cassino (Italy). Indoor particle number, mass, black carbon, CO2 and radon concentrations, as well as outdoor particle number were measured within school hours during the winter and spring season. The study found the concentrations of indoor particle number were influenced by the concentrations in the outdoors; highest BC values were detected in classrooms during peak traffic time. The effect of different seasons’ airing mode on the indoor air quality was also detected. The ratio between indoor and outdoor particles was of 0.85 ± 0.10 in winter, under airing conditions of short opening window periods, and 1.00 ± 0.15 in spring when the windows were opened for longer periods. This was associated to a higher degree of penetration of outdoor particles due to longer period of window opening. Lower CO2 levels were found in classrooms in spring (908 ppm) than in winter (2206 ppm). Additionally, a greater reduction in radon concentrations was found in spring. In addition, high PM10 levels were found in classrooms during break time due to re-suspension of coarse particles. Keywords: classroom; Ni/Nout ratio; airing by opening windows; particle number

64 citations


Journal ArticleDOI
TL;DR: There is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management.
Abstract: There is an ongoing debate about the reasons for and factors contributing to healthcare-associated infection (HAI). Different solutions have been proposed over time to control the spread of HAI, with more focus on hand hygiene than on other aspects such as preventing the aerial dissemination of bacteria. Yet, it emerges that there is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management. This study reviews the knowledge base on the role that environmental contamination plays in the transmission of HAI, with the aim of raising awareness regarding infection control issues that are frequently overlooked. From the discussion presented in the study, it is clear that many unknowns persist regarding aerial dissemination of bacteria, and its control via cleaning and disinfection of the clinical environment. There is a paucity of good-quality epidemiological data, making it difficult for healthcare authorities to develop evidence-based policies. Consequently, there is a strong need for carefully designed studies to determine the impact of environmental contamination on the spread of HAI.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed existing literature to show the emission factors of ultrafine particles (particles with a diameter less than 100nm) of waste incinerators and assess the contribution of incinerators to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks.

01 Dec 2015
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as mentioned in this paper provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.
Abstract: Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.

Journal ArticleDOI
TL;DR: In this article, the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOC sources and their contribution, and based on these; propose mitigation measures to reduce VOC exposure in schools.

Journal ArticleDOI
TL;DR: The main aim of the present study was to estimate size segregated doses from e-cigarette aerosols as a function of the airway generation number in lung lobes, and D(R) in the right-upper lung lobe was about twice that found in left-upper lobe and 20% greater in right- Lower lobe than the left-lower lobe.

01 Jan 2015
TL;DR: Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Abstract: On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 55×103 part cm-3), in most cases higher than the outdoor background value The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99% Referring to reference case, the corresponding emission factor is equal to 91×1012 part min-1, that is lower than one single high-duty vehicle Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible

01 Jan 2015
TL;DR: In this article, the authors investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOC sources and their contribution, and based on these; propose mitigation measures to reduce VOC exposure in schools.
Abstract: Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

Journal ArticleDOI
TL;DR: In this paper, a meta-regression was performed to estimate the average behavior for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3), significantly higher for both outdoors and indoors in the moderate than in the continental area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi.

08 Jun 2015
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors estimated the quantities for acute and chronic diseases and injuries for188 countries between 1990 and 2013.
Abstract: Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refi nements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2∙4 billion and 1∙6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537∙6 million in 1990 to 764∙8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114∙87 per 1000 people to 110∙31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013. Interpretation Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to nonfatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.

01 Jan 2015
TL;DR: In this article, three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia) were systematically studied and three long-term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analyzed.
Abstract: Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

Journal ArticleDOI
TL;DR: These PBDE concentrations in dust from classrooms, which are higher than in Australian homes, may explain some of the higher body burden of PBDEs in children compared to adults when taking into consideration age-dependant behaviours which increase dust ingestion.

Journal ArticleDOI
TL;DR: In this article, the authors used Bayesian hierarchical modeling to estimate the indoor culturable fungi and three individual fungal genera in a subtropical school setting, and showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.

Journal ArticleDOI
TL;DR: The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves, and the lowest UFP exposures were during the hours that children spent outdoors at school.

01 Jan 2015
TL;DR: The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular.
Abstract: Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

01 Jan 2015
TL;DR: In this paper, the authors quantified school children's daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures.
Abstract: Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children’s daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children’s time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 × 104 for children attending S1, 9.81 × 103 for S2, and 4.19 × 104 for S3. The mean daily NO2 exposure (µg m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted an Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular, and evaluated the respiratory health effects by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT), multiple breath nitrogen washout test (MBNW), fraction of exhaled nitric oxide (FeNO), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels.
Abstract: Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify pollutant levels in the outdoor environment of a school in Bhutan and assess the factors driving them using real-time instruments, while weekly samples for volatile organic compounds (VOCs), carbonyls and NO 2 were collected using a passive sampling method.

Journal ArticleDOI
TL;DR: In this article, a questionnaire-based cross-sectional investigation was conducted with adult bicycle commuters (n = 153; age = 41 ± 11 years; 28% female) to determine perceptions, symptoms, and willingness for specific exposure risk management strategies of exposure to air pollution.
Abstract: Background: An increase in bicycle commuting participation may improve public health and traffic congestion in cities. Information on air pollution exposure (such as perception, symptoms, and risk management) contributes to the responsible promotion of bicycle commuting participation. Methods: To determine perceptions, symptoms, and willingness for specific exposure risk management strategies of exposure to air pollution, a questionnaire-based cross-sectional investigation was conducted with adult bicycle commuters (n = 153; age = 41 ± 11 years; 28% female). Results: Frequency of acute respiratory signs and symptoms were positively associated with in-commute and postcommute compared with precommute time periods (P < .05); there was greater positive association with respiratory disorder compared with healthy, and female compared with male, participants. The perception (but not signs or symptoms) of in-commute exposure to air pollution was positively associated with the estimated level of in-commute proximi...

Journal ArticleDOI
TL;DR: This study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances, through the application of a maximum cumulative ratio approach.
Abstract: In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on children’s health. Within this context, through the application of a maximum cumulative ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health-related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the hazard index. Maximum cumulative ratio and hazard index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92 % of the schools, indoor air mixtures belonged to the ‘low concern’ group, and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus aids in the efficient health risk management of pollution emissions and air quality in the school environment.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the concentrations of charged nanoparticles near busy roads and overhead power lines and show that large concentrations of both positive and negative charged particles are present near busy roadways and that these concentrations commonly exceed those under highvoltage power lines.