scispace - formally typeset
Search or ask a question

Showing papers by "Lidia Morawska published in 2016"


Journal ArticleDOI
Theo Vos1, Christine Allen1, Megha Arora1, Ryan M Barber1  +696 moreInstitutions (260)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) as discussed by the authors was used to estimate the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.

5,050 citations


Journal ArticleDOI
Haidong Wang1, Mohsen Naghavi1, Christine Allen1, Ryan M Barber1  +841 moreInstitutions (293)
TL;DR: The Global Burden of Disease 2015 Study provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015, finding several countries in sub-Saharan Africa had very large gains in life expectancy, rebounding from an era of exceedingly high loss of life due to HIV/AIDS.

4,804 citations


01 Jan 2016
TL;DR: The comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study 2015 was used to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational risks or clusters of risks from 1990 to 2015.
Abstract: BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. FUNDING Bill & Melinda Gates Foundation.

3,920 citations


Journal ArticleDOI
TL;DR: In this paper, the authors combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0. 1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013.
Abstract: Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the world's population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.

854 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantified maternal mortality throughout the world by underlying cause and age from 1990 to 2015 for ages 10-54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories.

641 citations


01 Jan 2016
TL;DR: In this article, the authors combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0. 1° spatial resolution for five-year intervals from 1990-2010 and the year 2013.
Abstract: Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.

607 citations


Journal ArticleDOI
Haidong Wang1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3, Matthew M Coates1  +610 moreInstitutions (263)
TL;DR: The Global Burden of Disease 2015 Study provides an analytical framework to comprehensively assess trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time and decomposed the changes in under- 5 mortality to changes in SDI at the global level.

591 citations


Journal ArticleDOI
Stephen S Lim1, Kate Allen1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3  +695 moreInstitutions (42)
TL;DR: The analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient.

441 citations


Journal ArticleDOI
Josephine M. Bryant1, Josephine M. Bryant2, Dorothy M Grogono2, Dorothy M Grogono3, Daniela Rodriguez-Rincon2, Isobel Everall1, Karen Brown3, Karen Brown2, Pablo Moreno4, Deepshikha Verma5, Emily Hill5, Judith Drijkoningen2, Peter H. Gilligan6, Charles R. Esther6, Peadar G. Noone6, Olivia Giddings6, Scott C. Bell7, Scott C. Bell8, Rachel Thomson8, Claire E. Wainwright9, Claire E. Wainwright8, Chris Coulter, Sushil Pandey, Michelle Wood7, Michelle Wood8, Rebecca E Stockwell7, Rebecca E Stockwell8, Kay A. Ramsay8, Kay A. Ramsay7, Laura J. Sherrard7, Timothy J. Kidd10, Timothy J. Kidd8, Nassib Jabbour11, Graham R. Johnson11, Luke D. Knibbs8, Lidia Morawska11, Peter D. Sly8, Andrew Jones12, Diana Bilton12, Ian F. Laurenson, Michael Ruddy13, Stephen Bourke14, Ian C. J. W. Bowler15, Stephen J Chapman15, Andrew Clayton16, Mairi Cullen17, Owen J. Dempsey18, Miles Denton19, M. Desai9, Richard J Drew, Frank Edenborough, Jason T. Evans13, Jonathan Folb20, Thomas Daniels21, Helen Humphrey21, Barbara Isalska17, Søren Jensen-Fangel22, Bodil Jönsson23, Andrew M Jones17, Terese L. Katzenstein24, Troels Lillebaek25, Gordon MacGregor26, Sarah Mayell, Michael Millar27, Deborah E. Modha28, Edward F. Nash29, C. O'Brien14, Deirdre O'Brien, Chandra Ohri28, Caroline S. Pao27, Daniel Peckham19, Felicity Perrin30, Audrey Perry14, Tania Pressler24, Laura Prtak, Tavs Qvist24, Ali Robb14, Helen Rodgers31, Kirsten Schaffer, Nadia Shafi3, Jakko van Ingen32, Martin Walshaw, Danie Watson27, Noreen West12, Joanna L. Whitehouse29, Charles S. Haworth3, Simon R. Harris1, Diane J. Ordway5, Julian Parkhill1, R. Andres Floto3, R. Andres Floto2 
11 Nov 2016-Science
TL;DR: Using whole-genome analysis of a global collection of clinical isolates, it is shown that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally.
Abstract: Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole-genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.

396 citations


01 Oct 2016
TL;DR: In this article, the authors quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015, and assess the progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions.
Abstract: Background In transitioning from the Millennium Development Goal to the Sustainable Development Goal era, it is imperative to comprehensively assess progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions. We aimed to quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015. Methods We estimated maternal mortality at the global, regional, and national levels from 1990 to 2015 for ages 10–54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories, 11 of which were analysed at the subnational level. We quantified eight underlying causes of maternal death and four timing categories, improving estimation methods since GBD 2013 for adult all-cause mortality, HIV-related maternal mortality, and late maternal death. Secondary analyses then allowed systematic examination of drivers of trends, including the relation between maternal mortality and coverage of specific reproductive health-care services as well as assessment of observed versus expected maternal mortality as a function of Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Findings Only ten countries achieved MDG 5, but 122 of 195 countries have already met SDG 3.1. Geographical disparities widened between 1990 and 2015 and, in 2015, 24 countries still had a maternal mortality ratio greater than 400. The proportion of all maternal deaths occurring in the bottom two SDI quintiles, where haemorrhage is the dominant cause of maternal death, increased from roughly 68% in 1990 to more than 80% in 2015. The middle SDI quintile improved the most from 1990 to 2015, but also has the most complicated causal profile. Maternal mortality in the highest SDI quintile is mostly due to other direct maternal disorders, indirect maternal disorders, and abortion, ectopic pregnancy, and/or miscarriage. Historical patterns suggest achievement of SDG 3.1 will require 91% coverage of one antenatal care visit, 78% of four antenatal care visits, 81% of in-facility delivery, and 87% of skilled birth attendance. Interpretation Several challenges to improving reproductive health lie ahead in the SDG era. Countries should establish or renew systems for collection and timely dissemination of health data; expand coverage and improve quality of family planning services, including access to contraception and safe abortion to address high adolescent fertility; invest in improving health system capacity, including coverage of routine reproductive health care and of more advanced obstetric care—including EmOC; adapt health systems and data collection systems to monitor and reverse the increase in indirect, other direct, and late maternal deaths, especially in high SDI locations; and examine their own performance with respect to their SDI level, using that information to formulate strategies to improve performance and ensure optimum reproductive health of their population. Funding Bill & Melinda Gates Foundation.

357 citations


11 Nov 2016
TL;DR: In this paper, the authors used whole-genome analysis of a global collection of clinical isolates to show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones.
Abstract: Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole-genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.

Journal ArticleDOI
12 Jul 2016-Sensors
TL;DR: The potential of UAVs for air quality research has been established, but several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity.
Abstract: Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

Journal ArticleDOI
TL;DR: A review with updated reports in the literature about the risk of cardiovascular hospitalization in relation to different temperature exposures and the dose-response relationship of temperature-cardiovascular hospitalization by change in units of temperature, latitudes, and lag days suggested a significant short-term effect of cold exposure, heatwave and diurnal variation on cardiovascular hospitalizations.

Journal ArticleDOI
TL;DR: People in the age group of 5-65year-olds had a slightly higher risk of admissions caused by air pollutants than the elderly (65+years old) except for a significant effect of PM10 on the risk of cardiovascular admissions was found for the elderly only.

Journal ArticleDOI
21 Dec 2016-Sensors
TL;DR: The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions.
Abstract: Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

Journal ArticleDOI
TL;DR: This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms and possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.

Journal ArticleDOI
TL;DR: In this paper, the authors present the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large-scale deployment and identifies the research gaps that should be closed by future investigations.

Journal ArticleDOI
TL;DR: It is demonstrated that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies, and real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide.


Journal Article
TL;DR: Forouzanfar et al. as discussed by the authors provide a review of the new air pollution sensing methods to determine indoor air quality and discuss how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide.
Abstract: Household air pollution is ranked the 9th largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of the new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. However, we also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

Journal ArticleDOI
TL;DR: The sources identified were Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.

Journal ArticleDOI
TL;DR: Increased serum PFAAs levels may promote TH cell dysregulation and alter the availability of key TH1 and TH2 cytokines, ultimately contributing to the development of asthma that may differentially impact males to a greater degree than females.

Journal ArticleDOI
TL;DR: In this paper, the relationship between air pollution and lung function in children selected from heavily industrialized and polluted cities in northeastern China during 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities Portable electronic spirometers were used to measure lung function Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts.

Journal ArticleDOI
TL;DR: In this paper, the authors quantitatively compare exposure to ambient ultrafine particles at urban schools in two cities in developed countries, namely Brisbane (Australia) and Barcelona (Spain), using comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona.

Journal ArticleDOI
TL;DR: In this paper, the effects of air pollution on FBG were examined for 27,685 participants who were followed during 2006 and 2008 and found that increased exposure to NO2, SO2, and PM10 was significantly associated with increased FBG levels in single pollutant models.

Journal ArticleDOI
TL;DR: In this paper, satellite observations of nitrogen dioxide (NO2) in land-use regression (LUR) models can improve their predictive ability, but requires rigorous evaluation and validation.
Abstract: Including satellite observations of nitrogen dioxide (NO2) in land-use regression (LUR) models can improve their predictive ability, but requires rigorous evaluation. We used 123 passive NO2 samplers sited to capture within-city and near-road variability in two Australian cities (Sydney and Perth) to assess the validity of annual mean NO2 estimates from existing national satellite-based LUR models (developed with 68 regulatory monitors). The samplers spanned roadside, urban near traffic (≤100 m to a major road), and urban background (>100 m to a major road) locations. We evaluated model performance using R2 (predicted NO2 regressed on independent measurements of NO2), mean-square-error R2 (MSE-R2), RMSE, and bias. Our models captured up to 69% of spatial variability in NO2 at urban near-traffic and urban background locations, and up to 58% of variability at all validation sites, including roadside locations. The absolute agreement of measurements and predictions (measured by MSE-R2) was similar to their c...

Journal ArticleDOI
TL;DR: This study provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality and provides a solid platform for more detailed health and modelling investigations in the future.

Journal Article
TL;DR: In this paper, the authors examined the short-term effects of PM 10, PM 2.5, and PM 1 on respiratory admissions among young children in Hanoi, and found that infants and young children are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air.
Abstract: While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM 10 , PM 2.5 , and PM 1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM 10 , PM 2.5 , PM 1 and other confounding factors as NO 2 , SO 2 , CO, O 3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM 10 , PM 2.5 and PM 1 . An increase in 10 μg/m 3 of PM 10 , PM 2.5 or PM 1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air.

Journal ArticleDOI
TL;DR: In this article, a new particle formation (NPF) event was conducted in an urban environment to investigate the physical characteristics of NPF events, with a particular focus on nocturnal events and the differences between them and the daytime events.
Abstract: . Few studies have investigated nocturnal new particle formation (NPF) events, and none of them were conducted in urban environments. Nocturnal NPF can potentially be a significant source of particles in urban areas, and studying them would improve our understanding of nucleation mechanisms. To address this, our study was conducted in an urban environment to investigate the physical characteristics of NPF events, with a particular focus on nocturnal events and the differences between them and the daytime NPF events. Particle number size distribution (PNSD) was measured for 2 weeks at each of 25 sites across an urban environment. A new method was proposed to automatically categorise NPF events based on growth rate (GR) in order to remove the bias related to the manual procedure. Out of 219 observed events, 118 and 101 were categorised into class I and II respectively and 73 happened during the nighttime which included more than 30 % of the events. GR and condensation sink (CS) were calculated and a slight negative relationship between GR and CS was observed. Nocturnal events displayed higher GRs compared to daylight ones which were on average about 10 %. Back trajectory analysis was also conducted to estimate the locations of the sources of daylight and nocturnal precursors. While the precursors related to daylight events originated from different locations with no particular pattern, back-trajectory analysis showed many air masses associated with nocturnal NPF events were transported from over the ocean. Overall, nocturnal NPF events were found to be a significant source of particles in the studied environment with different physical characteristics and/or sources compared to daylight events.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels.