scispace - formally typeset
Search or ask a question
Author

Lidia Morawska

Bio: Lidia Morawska is an academic researcher from Queensland University of Technology. The author has contributed to research in topics: Particle number & Ultrafine particle. The author has an hindex of 100, co-authored 746 publications receiving 95412 citations. Previous affiliations of Lidia Morawska include University of Surrey & Jinan University.


Papers
More filters
01 Jan 2017
TL;DR: According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations.
Abstract: A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed. Keywords—Fungi, concentration, indoor, school, contributing factor.

1 citations

01 Jan 2011
TL;DR: Air exchange measurements combined with modelling afford a useful means of assessing the suitability of room ventilation at preventing airborne transmission within three distinct rooms in a major tertiary hospital in Australia.
Abstract: Outdoor air ventilation is a key mechanism controlling the airborne spread of several diseases. However, ventilation guidelines for hospitals are not typically based on preventing infection transmission. Aim: We sought to assess the effectiveness of current ventilation rates on infection risks for influenza, tuberculosis (TB) and rhinovirus within three distinct rooms in a major tertiary hospital in Australia. Methods: The rooms targeted were a Lung Function Laboratory, negative pressure isolation room in the Emergency Department and an Outpatient Consultation Room. Air exchange measurements were performed in each by using CO2 decay, and the proportion of outdoor air supplied was determined by CO2 mass-balance at the air handling unit. Gammaitoni and Nucci's infection risk model, based on the traditional Wells-Riley model, was then employed to model scenarios typical of those experienced by patients. Results: Current outdoor air exchange rates in the Lung Function Laboratory and Isolation Room were appropriate, and infection risks for all modelled scenarios were <3.6%. Influenza risk for patients entering the OPD Room after an infectious patient departed ranged from 3.6 to 20.7% depending on the occupancy time of the susceptible and infectious patient. Conclusions: In the absence of definitive guidelines, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne transmission.

1 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method.
Abstract: In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
Rafael Lozano1, Mohsen Naghavi1, Kyle J Foreman2, Stephen S Lim1  +192 moreInstitutions (95)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2010 aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex, using the Cause of Death Ensemble model.

11,809 citations

Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations

Journal ArticleDOI
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
TL;DR: In this paper, the authors estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.

9,324 citations

Journal ArticleDOI
Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1, Nicholas Graetz1, Christopher Margono1, Erin C Mullany1, Stan Biryukov1, Cristiana Abbafati2, Semaw Ferede Abera3, Jerry Abraham4, Niveen M E Abu-Rmeileh, Tom Achoki1, Fadia AlBuhairan5, Zewdie Aderaw Alemu6, Rafael Alfonso1, Mohammed K. Ali7, Raghib Ali8, Nelson Alvis Guzmán9, Walid Ammar, Palwasha Anwari10, Amitava Banerjee11, Simón Barquera, Sanjay Basu12, Derrick A Bennett8, Zulfiqar A Bhutta13, Jed D. Blore14, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang15, Rajiv Chowdhury16, Karen J. Courville, Michael H. Criqui17, David K. Cundiff, Kaustubh Dabhadkar7, Lalit Dandona18, Lalit Dandona1, Adrian Davis19, Anand Dayama7, Samath D Dharmaratne20, Eric L. Ding21, Adnan M. Durrani22, Alireza Esteghamati23, Farshad Farzadfar23, Derek F J Fay19, Valery L. Feigin24, Abraham D. Flaxman1, Mohammad H. Forouzanfar1, Atsushi Goto, Mark A. Green25, Rajeev Gupta, Nima Hafezi-Nejad23, Graeme J. Hankey26, Heather Harewood, Rasmus Havmoeller27, Simon I. Hay8, Lucia Hernandez, Abdullatif Husseini28, Bulat Idrisov29, Nayu Ikeda, Farhad Islami30, Eiman Jahangir31, Simerjot K. Jassal17, Sun Ha Jee32, Mona Jeffreys33, Jost B. Jonas34, Edmond K. Kabagambe35, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne36, Yousef Khader37, Young-Ho Khang38, Daniel Kim39, Ruth W Kimokoti40, Jonas Minet Kinge41, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan42, Taavi Lai, Mall Leinsalu22, Yichong Li, Xiaofeng Liang43, Shiwei Liu43, Giancarlo Logroscino44, Paulo A. Lotufo45, Yuan Qiang Lu21, Jixiang Ma43, Nana Kwaku Mainoo, George A. Mensah22, Tony R. Merriman46, Ali H. Mokdad1, Joanna Moschandreas47, Mohsen Naghavi1, Aliya Naheed48, Devina Nand, K.M. Venkat Narayan7, Erica Leigh Nelson1, Marian L. Neuhouser49, Muhammad Imran Nisar13, Takayoshi Ohkubo50, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy51, Uchechukwu K.A. Sampson35, Hyeyoung Seo, Sadaf G. Sepanlou23, Kenji Shibuya52, Rahman Shiri53, Ivy Shiue54, Gitanjali M Singh21, Jasvinder A. Singh55, Vegard Skirbekk41, Nicolas J. C. Stapelberg56, Lela Sturua57, Bryan L. Sykes58, Martin Tobias1, Bach Xuan Tran59, Leonardo Trasande60, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman61, Gustavo Velasquez-Melendez62, Vasiliy Victorovich Vlassov63, Stein Emil Vollset64, Stein Emil Vollset41, Theo Vos1, Claire L. Wang65, Xiao Rong Wang66, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright1, Y Claire Yang67, Hiroshi Yatsuya68, Jihyun Yoon, Seok Jun Yoon69, Yong Zhao70, Maigeng Zhou, Shankuan Zhu71, Alan D. Lopez14, Christopher J L Murray1, Emmanuela Gakidou1 
University of Washington1, Sapienza University of Rome2, Mekelle University3, University of Texas at San Antonio4, King Saud bin Abdulaziz University for Health Sciences5, Debre markos University6, Emory University7, University of Oxford8, University of Cartagena9, United Nations Population Fund10, University of Birmingham11, Stanford University12, Aga Khan University13, University of Melbourne14, National Taiwan University15, University of Cambridge16, University of California, San Diego17, Public Health Foundation of India18, Public Health England19, University of Peradeniya20, Harvard University21, National Institutes of Health22, Tehran University of Medical Sciences23, Auckland University of Technology24, University of Sheffield25, University of Western Australia26, Karolinska Institutet27, Birzeit University28, Brandeis University29, American Cancer Society30, Ochsner Medical Center31, Yonsei University32, University of Bristol33, Heidelberg University34, Vanderbilt University35, South African Medical Research Council36, Jordan University of Science and Technology37, New Generation University College38, Northeastern University39, Simmons College40, Norwegian Institute of Public Health41, Boston University42, Chinese Center for Disease Control and Prevention43, University of Bari44, University of São Paulo45, University of Otago46, University of Crete47, International Centre for Diarrhoeal Disease Research, Bangladesh48, Fred Hutchinson Cancer Research Center49, Teikyo University50, Bhabha Atomic Research Centre51, University of Tokyo52, Finnish Institute of Occupational Health53, Heriot-Watt University54, University of Alabama at Birmingham55, Griffith University56, National Center for Disease Control and Public Health57, University of California, Irvine58, Johns Hopkins University59, New York University60, University of Queensland61, Universidade Federal de Minas Gerais62, National Research University – Higher School of Economics63, University of Bergen64, Columbia University65, Shandong University66, University of North Carolina at Chapel Hill67, Fujita Health University68, Korea University69, Chongqing Medical University70, Zhejiang University71
TL;DR: The global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 is estimated using a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs).

9,180 citations