scispace - formally typeset
Search or ask a question
Author

Lidiane Maria de Andrade

Bio: Lidiane Maria de Andrade is an academic researcher from University of São Paulo. The author has contributed to research in topics: Surfactin & Medicine. The author has an hindex of 8, co-authored 25 publications receiving 277 citations.
Topics: Surfactin, Medicine, Proteome, Chemistry, Copper

Papers
More filters
Journal ArticleDOI
TL;DR: An overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food as mentioned in this paper.
Abstract: Chlorella nbsp and nbsp Spirulina are the two of the most well known microalgae genus Both microalgae genus have a significant content of proteins vitamins pigments fatty acids sterols among others which make their production application by the food industry quite interesting nbsp Chlorella genus is a eukaryotic microorganism whereas Spirulina genus cyanobacteria is a prokaryotic microorganism The aim of this review was to provide an overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food Chlorella and Spirulina microalgae and their derivatives are concluded not to be widely commercially exploited However they are remarkable sources of functional foods nutraceuticals and food supplements

173 citations

Journal ArticleDOI
TL;DR: Evaluating the production of MEL using cassava wastewater, a hydrophilic medium composed of a low-cost substrate which is a by-product of cassava processing, followed by foam fractionation and ultrafiltration led to a threefold increase in MEL purity in terms of protein

56 citations

Journal ArticleDOI
TL;DR: In this article, the simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a using alternative substrates was evaluated by both by solid-phase microextraction and liquid-liquid extraction.
Abstract: Biotechnological processes, such as the production of enzymes, peptides, bioflavours, biosurfactants, etc., are increasing, worldwide. Bacillus subtilis synthesizes surfactin, a powerful surface-active agent. However, due to its high production cost, commercial use is impractical. In this sense, the culture medium of biosurfactants represents ≈30% of cost of production. Another interesting compound produced by B. subtilis is 2,3-butanediol, which has potential application in rubber, fuel, etc. Thus, the main aim of this work was to optimize the simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a using alternative substrates, in which the production of 2,3-butanediol was evaluated by both by solid-phase microextraction and liquid-liquid extraction. In addition, as secondary aim, it was evaluated the biofilm formation by Bacillus subtilis on activated carbon, which may improve the production of surfactin. The experiments of central composite design indicated that the best substrate composition for both bioproducts is whey (27.7–34 g/L), activated carbon (25 g/L) and cassava wastewater (74 g/L). The bioprocessing at bench-top scale achieved the simultaneous production of ≈27.07 mg/L of surfactin and ≈330 mg/L of 2,3-BD (SPME plus liquid-liquid extraction). These results proved the technical feasibility of an interesting strategy of biotechnological production (simultaneous) using alternative substrates. The identification of clusters also leads to a prospecting studies on the separation of each cluster and further evaluation of their surface-active properties.

32 citations

Journal ArticleDOI
TL;DR: Production of surfactin using cassava wastewater as a low-cost culture medium and its purification by the 2-step ultrafiltration process is feasible, nevertheless, the higher protein content of this medium as compared to the synthetic one leads to a lower purity product.
Abstract: BACKGROUND: Bacillus subtilis synthesizes surfactin, a powerful surface-active agent. It has interesting potential applications. However, due to its high cost of production, commercial use is impracticable. The downstream processing represents ≈60% of production costs and the culture medium ≈30%. Many reports focused, separately, on production of surfactin using by-products (reduced cost) or the purification using synthetic medium. Therefore, the aim of this work was to evaluate, for the first time, the impact of using a by-product as fermentation medium on the downstream processing based on membrane filtration. RESULTS: Membranes of PES-100-kDa efficiently retained surfactin micelles - the first step of ultrafiltration, whereas, the second step required membranes of 50-kDa to separate surfactin monomers from proteins. Ultrafiltration of crude biosurfactant was associated with fouling and/or concentration polarization resulting in lower purity than when synthetic medium was used. Further improvement in purity was achieved by partial removal of proteins prior to ultrafiltration by precipitation and extraction. The RMN and MALDI-TOFMS analyses identified 11 potential surfactin homologous composed by two amino acid sequences. CONCLUSION: Production of surfactin using cassava wastewater as a low-cost culture medium and its purification by the 2-step ultrafiltration process is feasible, nevertheless, the higher protein content of this medium as compared to the synthetic one leads to a lower purity product; further increase in purity can be achieved by applying additional purification steps prior to ultrafiltration with the subsequent increased in process cost.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society.
Abstract: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society, from mastering the basic science of nutrient metabolism and function to applying nutritional concepts to combat human disease. Part I comprehensively covers specific dietary components, including major dietary constituents, minerals, vitamins and other Other CABI sites 

1,105 citations

Journal ArticleDOI
TL;DR: This work is an updated overview of apigenin, focusing on its health-promoting effects/therapeutic functions and, in particular, results of in vivo research, and an introduction to its chemistry.
Abstract: Several plant bioactive compounds have exhibited functional activities that suggest they could play a remarkable role in preventing a wide range of chronic diseases. The largest group of naturally-occurring polyphenols are the flavonoids, including apigenin. The present work is an updated overview of apigenin, focusing on its health-promoting effects/therapeutic functions and, in particular, results of in vivo research. In addition to an introduction to its chemistry, nutraceutical features have also been described. The main key findings from in vivo research, including animal models and human studies, are summarized. The beneficial indications are reported and discussed in detail, including effects in diabetes, amnesia and Alzheimer’s disease, depression and insomnia, cancer, etc. Finally, data on flavonoids from the main public databases are gathered to highlight the apigenin’s key role in dietary assessment and in the evaluation of a formulated diet, to determine exposure and to investigate its health effects in vivo.

525 citations

Journal ArticleDOI
TL;DR: The multifaceted roles of microalgae in wastewater treatment from the extent of micro algal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation are highlighted.

217 citations

Journal ArticleDOI
TL;DR: Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Abstract: Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides—hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.

213 citations

Journal ArticleDOI
TL;DR: This paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals as well as those that have not yet been marketed, and confirms the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins.
Abstract: The exploration of new food sources and natural products is the result of the increase in world population as well as the need for a healthier diet; in this context, microalgae are undoubtedly an interesting solution. With the intent to enhance their value in new commercial applications, this paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals (Chlorella vulgaris, Arthrospira platensis, Haematococcus pluvialis, Dunaliella salina) as well as those that have not yet been marketed (Scenedesmus almeriensis and Nannocholoropsis sp.). In this scope, the content of proteins, carbohydrates, lipids, total dietary fiber, humidity, ash, and carotenoids has been measured via standard methods. In addition, individual carotenoids (beta-carotene, astaxanthin, and lutein) as well as individual saturated, monounsaturated, and polyunsaturated fatty acids have been identified and quantified chromatographically. The results confirm the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins, but also show how their cellular content is rich and diverse. H. pluvialis green and red phases, and Nannochloropsis sp., in addition to producing astaxanthin and omega-3, contain about 25–33% w/w proteins on a dry basis. D. salina is rich in beta-carotene (3.45% w/w on a dry basis), S. Almeriensis is a source of lutein (0.30% w/w on a dry basis), and the C. vulgaris species is a protein-based microalgae (45% w/w on a dry basis). All, however, can also produce important fatty acids such as palmitic acid, γ-linolenic acid, and oleic acid. Considering their varied composition, these microalgae can find applications in multiple sectors. This is true for microalgae already on the market as well as for promising new sources of bioproducts such as S. almeriensis and Nannochloropsis sp.

143 citations