scispace - formally typeset
Search or ask a question
Author

Lieven Clarisse

Other affiliations: University of York
Bio: Lieven Clarisse is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Infrared atmospheric sounding interferometer & Volcano. The author has an hindex of 50, co-authored 217 publications receiving 8427 citations. Previous affiliations of Lieven Clarisse include University of York.


Papers
More filters
Journal ArticleDOI
TL;DR: The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage as discussed by the authors.
Abstract: . Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric), HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

566 citations

Journal ArticleDOI
TL;DR: In this paper, Infrared measurements of ammonia concentrations, obtained by the IASI/MetOp satellite, suggest that ammonia emissions in the Northern Hemisphere have been markedly underestimated, accelerating the formation of particulate matter and damaging aquatic and terrestrial ecosystems.
Abstract: Ammonia is a significant atmospheric pollutant, accelerating the formation of particulate matter and damaging aquatic and terrestrial ecosystems. Infrared measurements of ammonia concentrations, obtained by the IASI/MetOp satellite, suggest that ammonia emissions in the Northern Hemisphere have been markedly underestimated.

388 citations

Journal ArticleDOI
TL;DR: The Infrared Atmospheric Sounding Interferometer (IASI) as discussed by the authors is the main sounding component of EUMETSAT's Metop-A satellite, which was launched in October 2006.
Abstract: Four years after launch, IASI has delivered significant advances in remote sensing capability for numerical weather prediction and atmospheric composition monitoring and promises an excellent dataset for climate studies. The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of EUMETSAT's Metop-A satellite (Klaes et al., 2007), which was launched in October 2006. This article presents the results of the first four years of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability the quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases such as ozone and carbon monoxide can be produced in near-real time, and short-lived species such as ammonia or methanol can be mapped, allowing identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders, and demonstrated that such instruments have a vital role in the global observing system.

361 citations

Journal ArticleDOI
TL;DR: In this article, an inversion scheme was used to estimate the volcanic ash source strength as a function of altitude and time, and the results showed that volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6-16 %), 2 % (1-3 %) and 7 % (4-11 %) of the European area.
Abstract: . The April–May, 2010 volcanic eruptions of Eyjafjallajokull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that large improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8–28 μm diameter. We evaluate the results of our model results with a posteriori ash emissions using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6–16 %), 2 % (1–3 %) and 7 % (4–11 %), respectively, of the European area. For a limit of 2 mg m−3 only two episodes with fractions of 1.5 % (0.2–2.8 %) and 0.9 % (0.1–1.6 %) occurred, while the current "No-Fly" zone criterion of 4 mg m−3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.

346 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
TL;DR: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) as discussed by the authors is an update from the previous versions including MEGAN1.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGan2.02, which were described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al (2008).
Abstract: . The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGAN2.02, which was described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al. (2008). Isoprene comprises about half of the total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g) estimated using MEGAN2.1. Methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the MEGAN2.1 estimated emission. An additional 20 compounds (mostly terpenoids) are associated with the MEGAN2.1 estimates of another 17% of the total emission with the remaining 3% distributed among >100 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the estimated total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for ~80% of terpenoid emissions and ~50% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to land cover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://bai.acd.ucar.edu/MEGAN/ and the version integrated into the Community Land Model version 4 (CLM4) can be downloaded from http://www.cesm.ucar.edu/ .

2,141 citations