scispace - formally typeset
Search or ask a question
Author

Lihe Zhang

Bio: Lihe Zhang is an academic researcher from Dalian University of Technology. The author has contributed to research in topics: Image segmentation & Computer science. The author has an hindex of 27, co-authored 70 publications receiving 5619 citations. Previous affiliations of Lihe Zhang include Railway Institute & Beijing University of Posts and Telecommunications.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2013
TL;DR: This work considers both foreground and background cues in a different way and ranks the similarity of the image elements with foreground cues or background cues via graph-based manifold ranking, defined based on their relevances to the given seeds or queries.
Abstract: Most existing bottom-up methods measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects Instead of considering the contrast between the salient objects and their surrounding regions, we consider both foreground and background cues in a different way We rank the similarity of the image elements (pixels or regions) with foreground cues or background cues via graph-based manifold ranking The saliency of the image elements is defined based on their relevances to the given seeds or queries We represent the image as a close-loop graph with super pixels as nodes These nodes are ranked based on the similarity to background and foreground queries, based on affinity matrices Saliency detection is carried out in a two-stage scheme to extract background regions and foreground salient objects efficiently Experimental results on two large benchmark databases demonstrate the proposed method performs well when against the state-of-the-art methods in terms of accuracy and speed We also create a more difficult benchmark database containing 5,172 images to test the proposed saliency model and make this database publicly available with this paper for further studies in the saliency field

2,278 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: A visual saliency detection algorithm from the perspective of reconstruction errors that applies the Bayes formula to integrate saliency measures based on dense and sparse reconstruction errors and refined by an object-biased Gaussian model is proposed.
Abstract: In this paper, we propose a visual saliency detection algorithm from the perspective of reconstruction errors. The image boundaries are first extracted via super pixels as likely cues for background templates, from which dense and sparse appearance models are constructed. For each image region, we first compute dense and sparse reconstruction errors. Second, the reconstruction errors are propagated based on the contexts obtained from K-means clustering. Third, pixel-level saliency is computed by an integration of multi-scale reconstruction errors and refined by an object-biased Gaussian model. We apply the Bayes formula to integrate saliency measures based on dense and sparse reconstruction errors. Experimental results show that the proposed algorithm performs favorably against seventeen state-of-the-art methods in terms of precision and recall. In addition, the proposed algorithm is demonstrated to be more effective in highlighting salient objects uniformly and robust to background noise.

725 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: The appearance divergence and spatial distribution of salient objects and the background are considered and the equilibrium distribution in an ergodic Markov chain is exploited to reduce the absorbed time in the long-range smooth background regions.
Abstract: In this paper, we formulate saliency detection via absorbing Markov chain on an image graph model. We jointly consider the appearance divergence and spatial distribution of salient objects and the background. The virtual boundary nodes are chosen as the absorbing nodes in a Markov chain and the absorbed time from each transient node to boundary absorbing nodes is computed. The absorbed time of transient node measures its global similarity with all absorbing nodes, and thus salient objects can be consistently separated from the background when the absorbed time is used as a metric. Since the time from transient node to absorbing nodes relies on the weights on the path and their spatial distance, the background region on the center of image may be salient. We further exploit the equilibrium distribution in an ergodic Markov chain to reduce the absorbed time in the long-range smooth background regions. Extensive experiments on four benchmark datasets demonstrate robustness and efficiency of the proposed method against the state-of-the-art methods.

612 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: The consistency-enhanced loss is exploited to highlight the fore-/back-ground difference and preserve the intra-class consistency in the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates.
Abstract: Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi-scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.

487 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This work proposes to augment feedforward neural networks with a novel pyramid pooling module and a multi-stage refinement mechanism for saliency detection and shows that the proposed method compares favorably against the state-of-the-art approaches.
Abstract: Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To detect and segment salient objects accurately, it is necessary to extract and combine high-level semantic features with low-levelfine details simultaneously. This happens to be a challenge for CNNs as repeated subsampling operations such as pooling and convolution lead to a significant decrease in the initial image resolution, which results in loss of spatial details and finer structures. To remedy this problem, here we propose to augment feedforward neural networks with a novel pyramid pooling module and a multi-stage refinement mechanism for saliency detection. First, our deep feedward net is used to generate a coarse prediction map with much detailed structures lost. Then, refinement nets are integrated with local context information to refine the preceding saliency maps generated in the master branch in a stagewise manner. Further, a pyramid pooling module is applied for different-region-based global context aggregation. Empirical evaluations over six benchmark datasets show that our proposed method compares favorably against the state-of-the-art approaches.

424 citations


Cited by
More filters
01 Jan 2006

3,012 citations

Journal ArticleDOI
TL;DR: Res2Net as mentioned in this paper constructs hierarchical residual-like connections within one single residual block to represent multi-scale features at a granular level and increases the range of receptive fields for each network layer.
Abstract: Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/ .

1,553 citations

Journal ArticleDOI
TL;DR: It is found that the models designed specifically for salient object detection generally work better than models in closely related areas, which provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems.
Abstract: We extensively compare, qualitatively and quantitatively, 41 state-of-the-art models (29 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over seven challenging data sets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted three years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for the state-of-the-art models, provide useful hints toward constructing more challenging large-scale data sets and better saliency models. Finally, we propose probable solutions for tackling several open problems, such as evaluation scores and data set bias, which also suggest future research directions in the rapidly growing field of salient object detection.

1,372 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work proposes a robust background measure, called boundary connectivity, which characterizes the spatial layout of image regions with respect to image boundaries and is much more robust and presents unique benefits that are absent in previous saliency measures.
Abstract: Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets.

1,321 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: This paper regards saliency map computation as a regression problem, which is based on multi-level image segmentation, and uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the salency map.
Abstract: Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.

1,057 citations