scispace - formally typeset
Search or ask a question
Author

Lihong V. Wang

Bio: Lihong V. Wang is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Photoacoustic Doppler effect & Optical tomography. The author has an hindex of 136, co-authored 1118 publications receiving 72482 citations. Previous affiliations of Lihong V. Wang include University of Hawaii & University of Oklahoma.


Papers
More filters
Journal ArticleDOI
23 Mar 2012-Science
TL;DR: A review of the state of the art of photoacoustic tomography for both biological and clinical studies can be found in this paper, where the authors discuss the current state-of-the-art and discuss future prospects.
Abstract: Photoacoustic tomography (PAT) can create multiscale multicontrast images of living biological structures ranging from organelles to organs. This emerging technology overcomes the high degree of scattering of optical photons in biological tissue by making use of the photoacoustic effect. Light absorption by molecules creates a thermally induced pressure jump that launches ultrasonic waves, which are received by acoustic detectors to form images. Different implementations of PAT allow the spatial resolution to be scaled with the desired imaging depth in tissue while a high depth-to-resolution ratio is maintained. As a rule of thumb, the achievable spatial resolution is on the order of 1/200 of the desired imaging depth, which can reach up to 7 centimeters. PAT provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. We review the state of the art of PAT for both biological and clinical studies and discuss future prospects.

3,518 citations

Journal ArticleDOI
TL;DR: A Monte Carlo model of steady-state light transport in multi-layered tissues (MCML) has been coded in ANSI Standard C; therefore, the program can be used on various computers as mentioned in this paper.

2,678 citations

Journal ArticleDOI
TL;DR: An overview of the rapidly expanding field of photoacoustic imaging for biomedical applications can be found in this article, where a number of imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography using unfocused transducers are introduced.
Abstract: Photoacoustic imaging (also called optoacoustic or thermoacoustic imaging) has the potential to image animal or human organs, such as the breast and the brain, with simultaneous high contrast and high spatial resolution. This article provides an overview of the rapidly expanding field of photoacoustic imaging for biomedical applications. Imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography with unfocused transducers, are introduced. Special emphasis is placed on computed tomography, including reconstruction algorithms, spatial resolution, and related recent experiments. Promising biomedical applications are discussed throughout the text, including (1) tomographic imaging of the skin and other superficial organs by laser-induced photoacoustic microscopy, which offers the critical advantages, over current high-resolution optical imaging modalities, of deeper imaging depth and higher absorptioncontrasts, (2) breast cancerdetection by near-infrared light or radio-frequency–wave-induced photoacoustic imaging, which has important potential for early detection, and (3) small animal imaging by laser-induced photoacoustic imaging, which measures unique optical absorptioncontrasts related to important biochemical information and provides better resolution in deep tissues than optical imaging.

2,343 citations

Journal ArticleDOI
TL;DR: Functional photoacoustic microscopy (fPAM) is reported, which provides multiwavelength imaging of optical absorption and permits high spatial resolution beyond this depth limit with a ratio of maximum imaging depth to depth resolution greater than 100.
Abstract: Although optical absorption is strongly associated with the physiological status of biological tissue, existing high-resolution optical imaging modalities, including confocal microscopy, two-photon microscopy and optical coherence tomography, do not sense optical absorption directly. Furthermore, optical scattering prevents these methods from imaging deeper than ~1 mm below the tissue surface. Here we report functional photoacoustic microscopy (fPAM), which provides multiwavelength imaging of optical absorption and permits high spatial resolution beyond this depth limit with a ratio of maximum imaging depth to depth resolution greater than 100. Reflection mode, rather than orthogonal or transmission mode, is adopted because it is applicable to more anatomical sites than the others. fPAM is demonstrated with in vivo imaging of angiogenesis, melanoma, hemoglobin oxygen saturation (sO_2) of single vessels in animals and total hemoglobin concentration in humans.

1,766 citations

Journal ArticleDOI
TL;DR: In vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT) is reported, which retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound.
Abstract: Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy.

1,724 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: Recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
Abstract: Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).

4,836 citations