scispace - formally typeset
Search or ask a question
Author

Lihong Zhi

Bio: Lihong Zhi is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Polynomial & Sylvester matrix. The author has an hindex of 22, co-authored 82 publications receiving 1515 citations. Previous affiliations of Lihong Zhi include University of Western Ontario & Academia Sinica.


Papers
More filters
Journal ArticleDOI
TL;DR: A stable and practical algorithm that uses QR factors of the Sylvester matrix to compute the greatest common divisor (GCD) of univariate approximate polynomials over /spl Ropf/[x] or /spl Copf/ [x].
Abstract: We present a stable and practical algorithm that uses QR factors of the Sylvester matrix to compute the greatest common divisor (GCD) of univariate approximate polynomials over /spl Ropf/[x] or /spl Copf/[x]. An approximate polynomial is a polynomial with coefficients that are not known with certainty. The algorithm of this paper improves over previously published algorithms by handling the case when common roots are near to or outside the unit circle, by splitting and reversal if necessary. The algorithm has been tested on thousands of examples, including pairs of polynomials of up to degree 1000, and is now distributed as the program QRGCD in the SNAP package of Maple 9.

115 citations

Journal ArticleDOI
TL;DR: This work presents a hybrid symbolic-numeric algorithm for certifying a polynomial or rational function with rational coefficients to be non-negative for all real values of the variables by computing a representation for it as a fraction of twoPolynomial sum-of-squares (SOS) with rational coefficient.

107 citations

Proceedings ArticleDOI
09 Jul 2006
TL;DR: This work presents an algorithm based on a version of the structured total least norm (STLN) method and demonstrates that the algorithm in practice computes globally minimal approximations on a diverse set of benchmark polynomials.
Abstract: We consider the problem of computing minimal real or complex deformations to the coefficients in a list of relatively prime real or complex multivariate polynomials such that the deformed polynomials have a greatest common divisor (GCD) of at least a given degree k. In addition, we restrict the deformed coefficients by a given set of linear constraints, thus introducing the linearly constrained approximate GCD problem. We present an algorithm based on a version of the structured total least norm (STLN) method and demonstrate on a diverse set of benchmark polynomials that the algorithm in practice computes globally minimal approximations. As an application of the linearly constrained approximate GCD problem we present an STLN-based method that computes a real or complex polynomial the nearest real or complex polynomial that has a root of multiplicity at least k. We demonstrate that the algorithm in practice computes on the benchmark polynomials given in the literature the known globally optimal nearest singular polynomials. Our algorithms can handle, via randomized preconditioning, the difficult case when the nearest solution to a list of real input polynomials actually has non-real complex coefficients.

102 citations

Book ChapterDOI
01 Jan 2007
TL;DR: This work presents iterative algorithms that compute an approximate GCD and that can certify an approximate ∈-GCD when a tolerance ∈ is given on input and demonstrates the practical performance of these algorithms on a diverse set of univariate pairs of polynomials.
Abstract: The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms, in our case for matrices with Sylvester structure. We present iterative algorithms that compute an approximate GCD and that can certify an approximate ∈-GCD when a tolerance ∈ is given on input. Each single iteration is carried out with a number of floating point operations that is of cubic order in the input degrees. We also demonstrate the practical performance of our algorithms on a diverse set of univariate pairs of polynomials.

101 citations

Proceedings ArticleDOI
04 Jul 2004
TL;DR: It is demonstrated on a significant body of experimental data that the algorithm is practical and can find factorizable polynomials within a distance that is about the same in relative magnitude as the input error, even when the relative error in the input is substantial.
Abstract: The input to our algorithm is a multivariate polynomial, whose complex rational coefficients are considered imprecise with an unknown error that causes f to be irreducible over the complex numbers C. We seek to perturb the coefficients by a small quantitity such that the resulting polynomial factors over C. Ideally, one would like to minimize the perturbation in some selected distance measure, but no efficient algorithm for that is known. We give a numerical multivariate greatest common divisor algorithm and use it on a numerical variant of algorithms by W. M. Ruppert and S. Gao. Our numerical factorizer makes repeated use of singular value decompositions. We demonstrate on a significant body of experimental data that our algorithm is practical and can find factorizable polynomials within a distance that is about the same in relative magnitude as the input error, even when the relative error in the input is substantial (10-3).

78 citations


Cited by
More filters
Book
12 Mar 2014
TL;DR: The Tarski-Seidenberg Principle as a Transfer Tool for Real Algebraic Geometry as mentioned in this paper is a transfer tool for real algebraic geometry, and it can be used to solve the Hilbert's 17th Problem.
Abstract: 1. Ordered Fields, Real Closed Fields.- 2. Semi-algebraic Sets.- 3. Real Algebraic Varieties.- 4. Real Algebra.- 5. The Tarski-Seidenberg Principle as a Transfer Tool.- 6. Hilbert's 17th Problem. Quadratic Forms.- 7. Real Spectrum.- 8. Nash Functions.- 9. Stratifications.- 10. Real Places.- 11. Topology of Real Algebraic Varieties.- 12. Algebraic Vector Bundles.- 13. Polynomial or Regular Mappings with Values in Spheres.- 14. Algebraic Models of C? Manifolds.- 15. Witt Rings in Real Algebraic Geometry.- Index of Notation.

2,164 citations

Book
21 Feb 1970

986 citations

Journal ArticleDOI
TL;DR: This highly successful textbook, widely regarded as the “bible of computer algebra”, gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems.
Abstract: Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the “bible of computer algebra”, gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany oneor two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.

937 citations