scispace - formally typeset
Search or ask a question
Author

Lijian Yang

Bio: Lijian Yang is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Estimator & Confidence and prediction bands. The author has an hindex of 28, co-authored 70 publications receiving 2351 citations. Previous affiliations of Lijian Yang include Tsinghua University & Humboldt University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an additive model with second-order interaction terms is considered and marginal integration estimators and a combined backfitting-integration estimator are proposed for all components of the model and their derivatives.
Abstract: We consider an additive model with second-order interaction terms Both marginal integration estimators and a combined backfitting-integration estimator are proposed for all components of the model and their derivatives The corresponding asymptotic distributions are derived Moreover, two test statistics for testing the presence of interactions are proposed Asymptotics for the test functions and local power results are obtained Because direct implementation of the test procedure based on the asymptotics would produce inaccurate results unless the number of observations is very large, a bootstrap procedure is provided, which is applicable for small or moderate sample sizes Further, based on these methods a general test for additivity is developed Estimation and testing methods are shown to work well in simulation studies Finally, our methods are illustrated on a five-dimensional production function for a set of Wisconsin farm data In particular, the separability hypothesis for the production function is discussed

159 citations

Journal ArticleDOI
TL;DR: Under rather weak conditions, spline-backfitted kernel estimators of the component functions for the nonlinear additive time series data are proposed that are both computationally expedient so they are usable for analyzing very high-dimensional time series, and theoretically reliable so inference can be made on the components functions with confidence.
Abstract: Application of nonparametric and semiparametric regression techniques to high-dimensional time series data has been hampered due to the lack of effective tools to address the ``curse of dimensionality.'' Under rather weak conditions, we propose spline-backfitted kernel estimators of the component functions for the nonlinear additive time series data that are both computationally expedient so they are usable for analyzing very high-dimensional time series, and theoretically reliable so inference can be made on the component functions with confidence. Simulation experiments have provided strong evidence that corroborates the asymptotic theory.

115 citations

Journal ArticleDOI
TL;DR: A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct, and the confidence band is extended to the difference of mean functions of two populations of functional data.
Abstract: A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct. In addition, the spline estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are asymptotically the same as if all random trajectories are observed entirely and without errors. The confidence band is also extended to the difference of mean functions of two populations of functional data. Simulation experiments provide strong evidence that corroborates the asymptotic theory while computing is efficient. The confidence band procedure is illustrated by analysing the near-infrared spectroscopy data.

105 citations

Journal ArticleDOI
TL;DR: In this article, a spline estimation and the Bayes information criterion are used for non-linear additive autoregressive models to overcome the "curse of dimensionality", whereas the spline estimators effectively take into account such a structure in estimation.
Abstract: Summary. We propose a lag selection method for non-linear additive autoregressive models that is based on spline estimation and the Bayes information criterion. The additive structure of the autoregression function is used to overcome the ‘curse of dimensionality’, whereas the spline estimators effectively take into account such a structure in estimation. A stepwise procedure is suggested to implement the method proposed. A comprehensive Monte Carlo study demonstrates good performance of the method proposed and a substantial computational advantage over existing local-polynomial-based methods. Consistency of the lag selection method based on the Bayes information criterion is established under the assumption that the observations are from a stochastic process that is strictly stationary and strongly mixing, which provides the first theoretical result of this kind for spline smoothing of weakly dependent data.

103 citations

Journal ArticleDOI
TL;DR: The authors proposed spline-backfitted kernel estimators of the component functions for the nonlinear additive time series data that are both computationally expedient so they are usable for analyzing very high-dimensional time series, and theoretically reliable so inference can be made on the component function with confidence.
Abstract: Application of nonparametric and semiparametric regression techniques to high-dimensional time series data has been hampered due to the lack of effective tools to address the “curse of dimensionality.” Under rather weak conditions, we propose spline-backfitted kernel estimators of the component functions for the nonlinear additive time series data that are both computationally expedient so they are usable for analyzing very high-dimensional time series, and theoretically reliable so inference can be made on the component functions with confidence. Simulation experiments have provided strong evidence that corroborates the asymptotic theory.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Book
16 Oct 2005
TL;DR: The most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management can be found in this paper, where the authors describe the latest advances in the field, including market, credit and operational risk modelling.
Abstract: This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation

2,580 citations

Journal ArticleDOI
Tamar Frankel1
TL;DR: The Essay concludes that practitioners theorize, and theorists practice, use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ.
Abstract: Much has been written about theory and practice in the law, and the tension between practitioners and theorists. Judges do not cite theoretical articles often; they rarely "apply" theories to particular cases. These arguments are not revisited. Instead the Essay explores the working and interaction of theory and practice, practitioners and theorists. The Essay starts with a story about solving a legal issue using our intellectual tools - theory, practice, and their progenies: experience and "gut." Next the Essay elaborates on the nature of theory, practice, experience and "gut." The third part of the Essay discusses theories that are helpful to practitioners and those that are less helpful. The Essay concludes that practitioners theorize, and theorists practice. They use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ. Theory, practice, experience and "gut" help us think, remember, decide and create. They complement each other like the two sides of the same coin: distinct but inseparable.

2,077 citations

Journal ArticleDOI
TL;DR: Chapman and Miller as mentioned in this paper, Subset Selection in Regression (Monographs on Statistics and Applied Probability, no. 40, 1990) and Section 5.8.
Abstract: 8. Subset Selection in Regression (Monographs on Statistics and Applied Probability, no. 40). By A. J. Miller. ISBN 0 412 35380 6. Chapman and Hall, London, 1990. 240 pp. £25.00.

1,154 citations