scispace - formally typeset
Search or ask a question
Author

Lijie Grace Zhang

Bio: Lijie Grace Zhang is an academic researcher from George Washington University. The author has contributed to research in topics: 3D bioprinting & Tissue engineering. The author has an hindex of 46, co-authored 139 publications receiving 5580 citations. Previous affiliations of Lijie Grace Zhang include Washington University in St. Louis & Brown University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A review of the latest applications of carbon nanofibers and carbon nanotubes in regenerative medicine can be found in this article, where the authors focus on the application of carbon carbon nanostructures in the field of bio-inspired medicine.

410 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in 3D biop printing technology, as well as design concepts of bioinks suitable for the bioprinting process, focusing more specifically on vasculature, neural networks, the heart and liver are provided.
Abstract: Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.

355 citations

Journal ArticleDOI
TL;DR: Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate, and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL).
Abstract: Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques.

264 citations

Journal ArticleDOI
TL;DR: The criteria of 4D printing is established, followed by an extensive summary of state-of-the-art technological advances in the field, and the applications of4D printing in tissue and organ regeneration are explored, including developing synthetic tissues and implantable scaffolds.

258 citations

Journal ArticleDOI
TL;DR: 3D bioprinted matrix, with BrCa cells and bone stromal cells, provides a suitable model with which to study the interactive effects of cells in the context of an artificial bone microenvironment and thus may serve as a valuable tool for the investigation of postmetastatic breast cancer progression in bone.
Abstract: Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts or MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA). When BrCa cells were introduced into the stromal cell-laden bioprinted matrices, we found that the growth of BrCa cells was enhanced by the presence of osteoblasts or MSCs, whereas the proliferation of the osteoblasts or MSCs was inhibited by the BrCa cells. The BrCa cells co-cultured with MSCs or osteoblasts presented increased vascular...

204 citations


Cited by
More filters
Journal ArticleDOI
05 May 2017-Science
TL;DR: The advances in making hydrogels with improved mechanical strength and greater flexibility for use in a wide range of applications are reviewed, foreseeing opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales.
Abstract: BACKGROUND Hydrogels are formed through the cross-linking of hydrophilic polymer chains within an aqueous microenvironment. The gelation can be achieved through a variety of mechanisms, spanning physical entanglement of polymer chains, electrostatic interactions, and covalent chemical cross-linking. The water-rich nature of hydrogels makes them broadly applicable to many areas, including tissue engineering, drug delivery, soft electronics, and actuators. Conventional hydrogels usually possess limited mechanical strength and are prone to permanent breakage. The lack of desired dynamic cues and structural complexity within the hydrogels has further limited their functions. Broadened applications of hydrogels, however, require advanced engineering of parameters such as mechanics and spatiotemporal presentation of active or bioactive moieties, as well as manipulation of multiscale shape, structure, and architecture. ADVANCES Hydrogels with substantially improved physicochemical properties have been enabled by rational design at the molecular level and control over multiscale architecture. For example, formulations that combine permanent polymer networks with reversibly bonding chains for energy dissipation show strong toughness and stretchability. Similar strategies may also substantially enhance the bonding affinity of hydrogels at interfaces with solids by covalently anchoring the polymer networks of tough hydrogels onto solid surfaces. Shear-thinning hydrogels that feature reversible bonds impart a fluidic nature upon application of shear forces and return back to their gel states once the forces are released. Self-healing hydrogels based on nanomaterial hybridization, electrostatic interactions, and slide-ring configurations exhibit excellent abilities in spontaneously healing themselves after damages. Additionally, harnessing techniques that can dynamically and precisely configure hydrogels have resulted in flexibility to regulate their architecture, activity, and functionality. Dynamic modulations of polymer chain physics and chemistry can lead to temporal alteration of hydrogel structures in a programmed manner. Three-dimensional printing enables architectural control of hydrogels at high precision, with a potential to further integrate elements that enable change of hydrogel configurations along prescribed paths. OUTLOOK We envision the continuation of innovation in new bioorthogonal chemistries for making hydrogels, enabling their fabrication in the presence of biological species without impairing cellular or biomolecule functions. We also foresee opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales. In addition, technologies that precisely regulate the physicochemical properties of hydrogels in spatiotemporally controlled manners are crucial in controlling their dynamics, such as degradation and dynamic presentation of biomolecules. We believe that the fabrication of hydrogels should be coupled with end applications in a feedback loop in order to achieve optimal designs through iterations. In the end, it is the combination of multiscale constituents and complementary strategies that will enable new applications of this important class of materials.

1,588 citations

01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations

Journal ArticleDOI
TL;DR: It is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval.

857 citations

Journal ArticleDOI
TL;DR: Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects and may open new insights in the near future.
Abstract: This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.

816 citations

Journal ArticleDOI
TL;DR: A brief introduction into the new advances in calcium phosphate nanocoatings and their composites, with a range of materials such as bioglass, carbon nanotubes, silica, ceramic oxide, and other nanoparticles being investigated or used in dentistry.
Abstract: The purpose of coatings on implants is to achieve some or all of the improvements in biocompatibility, bioactivity, and increased protection from the release of harmful or unnecessary metal ions. During the last decade, there has been substantially increased interest in nanomaterials in biomedical science and dentistry. Nanocomposites can be described as a combination of two or more nanomaterials. By this approach, it is possible to manipulate mechanical properties, such as strength and modulus of the composites, to become closer to those of natural bone. This is feasible with the help of secondary substitution phases. Currently, the most common composite materials used for clinical applications are those selected from a handful of available and well-characterized biocompatible ceramics and natural and synthetic polymers. This approach is currently being explored in the development of a new generation of nanocomposite coatings with a wider range of oral and dental applications to promote osseointegration. The aim of this review is to give a brief introduction into the new advances in calcium phosphate nanocoatings and their composites, with a range of materials such as bioglass, carbon nanotubes, silica, ceramic oxide, and other nanoparticles being investigated or used in dentistry.

808 citations