scispace - formally typeset
Search or ask a question
Author

Lijun Hang

Bio: Lijun Hang is an academic researcher from Hangzhou Dianzi University. The author has contributed to research in topics: Inverter & AC power. The author has an hindex of 23, co-authored 100 publications receiving 2559 citations. Previous affiliations of Lijun Hang include Shanghai Jiao Tong University & Zhejiang University.


Papers
More filters
Journal ArticleDOI
TL;DR: The most important control schemes for the parallel operation of UPS systems, including active load-sharing techniques and droop control approaches, are depicted.
Abstract: In the last years, the use of distributed uninterruptible power supply (UPS) systems has been growing into the market, becoming an alternative to large conventional UPS systems. In addition, with the increasing interest in renewable energy integration and distributed generation, distributed UPS systems can be a suitable solution for storage energy in micro grids. This paper depicts the most important control schemes for the parallel operation of UPS systems. Active load-sharing techniques and droop control approaches are described. The recent improvements and variants of these control techniques are presented.

666 citations

Journal ArticleDOI
TL;DR: In this article, a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications is presented.
Abstract: This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking control scheme is applied to both single- and three-phase multilevel inverters, which allows independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase seven-level cascaded H-bridge inverter has been built utilizing nine H-bridge modules (three modules per phase). Each H-bridge module is connected to a 185-W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

478 citations

Journal ArticleDOI
Yilei Gu1, Zhengyu Lu1, Lijun Hang1, Zhaoming Qian1, Guisong Huang 
TL;DR: In this article, a three-level soft switching LLC series resonant dc/dc converter is presented, which achieves zero-voltage switching (ZVS) for each main switch without any auxiliary circuit.
Abstract: Paper presents a three-level soft switching LLC series resonant dc/dc converter. Zero-voltage switching (ZVS) is achieved for each main switch without any auxiliary circuit. Voltage stress of each main switch is half of input voltage. Zero-current-switching (ZCS) is achieved for rectifier diodes. Wide input/output range can be achieved under low frequency range because of two-stage resonance. Only one magnetic component is required in this converter. Efficiency is higher in high line input, so this converter is a preferable candidate for power products with the requirement of hold up time. For design convenience, relationship between dc gain and switching frequency, load resistance is deduced. Its open load characteristic and short load characteristic are exposed to provide theory basis for no load operation and over current protection. Design consideration of four dead times is presented to assure that voltage stress for main switches is within half of input voltage and ZVS for each main switch is achieved. Finally the principle of operation and the characteristics of the presented converter are verified on a 500V-700V input 54V/10A output experimental prototype, whose efficiency reaches 94.7% under rating condition.

288 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a global optimal condition (GOC) equation to derive the closed form of analytic expressions of an optimal modulation scheme that makes the DAB converter operate with minimized root-mean-square (rms) current during whole power range with different operating modes.
Abstract: The triple phase shift (TPS) modulation scheme, which provides three control freedoms, is of great importance for the optimized operation of a dual active bridge (DAB) isolated bidirectional dc/dc converter. First of all, this paper introduces an accurate, universal model to describe the analytic expressions of the DAB converter under TPS control. Based on this, six operating modes of the DAB converter are further discussed. Afterwards, the concept of global optimal condition (GOC) equations is proposed to derive the closed form of analytic expressions of an optimal modulation scheme that makes the DAB converter operate with minimized root-mean-square (rms) current during whole power range with different operating modes. According to the GOC equations, the physical explanation of the proposed modulation scheme is further given in details, and the complex interaction among the control variables, the transferred power, and rms current is revealed. The real-time optimization process of the proposed method is also specified. Finally, the proposed methods are applied to a laboratory prototype. The experimental results confirm the theoretical analysis and practical feasibility of the proposed strategies.

246 citations

Journal ArticleDOI
TL;DR: The maximum unbalanced load is deduced versus the modulation index m when the converter works in unity power factor and the tested unbalanced limit of outputs for the experimental platform was given under different modulation indices.
Abstract: In this paper, the analysis of space vector modulation of a three-phase/wire/level Vienna rectifier is conducted, according to which the implementation of the equivalent carrier-based pulsewidth modulation is deduced theoretically within each separated sector in the diagram of vectors. The voltage balancing ability of dc-link neutral point, which depends on the uneven distribution of short vectors, is analyzed as well. An adaptive and robust controller to balance the output voltage under the unbalanced load limit for different modulation indices is proposed. The proposed controller can work at wide range of unbalanced load condition as well. Furthermore, the maximum unbalanced load is deduced versus the modulation index m when the converter works in unity power factor. An experimental prototype of 2.5 kW was built to verify the effectiveness of the theoretical analysis. Finally, the tested unbalanced limit of outputs for the experimental platform was given under different modulation indices. The output voltages for dual bus are balanced, and the theoretical analysis is verified.

109 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations

Journal ArticleDOI
TL;DR: This paper reviews the status of hierarchical control strategies applied to microgrids and discusses the future trends.
Abstract: Advanced control strategies are vital components for realization of microgrids. This paper reviews the status of hierarchical control strategies applied to microgrids and discusses the future trends. This hierarchical control structure consists of primary, secondary, and tertiary levels, and is a versatile tool in managing stationary and dynamic performance of microgrids while incorporating economical aspects. Various control approaches are compared and their respective advantages are highlighted. In addition, the coordination among different control hierarchies is discussed.

1,234 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the state of the art in dc microgrid protection and grounding is provided, which discusses both design of practical protective devices and their integration into overall protection systems.
Abstract: DC microgrids (MGs) have been gaining a continually increasing interest over the past couple of years both in academia and industry. The advantages of dc distribution when compared to its ac counterpart are well known. The most important ones include higher reliability and efficiency, simpler control and natural interface with renewable energy sources, and electronic loads and energy storage systems. With rapid emergence of these components in modern power systems, the importance of dc in today's society is gradually being brought to a whole new level. A broad class of traditional dc distribution applications, such as traction, telecom, vehicular, and distributed power systems can be classified under dc MG framework and ongoing development, and expansion of the field is largely influenced by concepts used over there. This paper aims first to shed light on the practical design aspects of dc MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in dc MG protection and grounding is provided. Owing to the fact that there is no zero-current crossing, an arc that appears upon breaking dc current cannot be extinguished naturally, making the protection of dc MGs a challenging problem. In relation with this, a comprehensive overview of protection schemes, which discusses both design of practical protective devices and their integration into overall protection systems, is provided. Closely coupled with protection, conflicting grounding objectives, e.g., minimization of stray current and common-mode voltage, are explained and several practical solutions are presented. Also, standardization efforts for dc systems are addressed. Finally, concluding remarks and important future research directions are pointed out.

964 citations