scispace - formally typeset
Search or ask a question
Author

Lili Zhang

Bio: Lili Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Carbon nanotube & Materials science. The author has an hindex of 13, co-authored 22 publications receiving 5433 citations. Previous affiliations of Lili Zhang include Technical University of Denmark & University of Queensland.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a top-down thermal oxidation etching of bulk g-C3N4 in air has been shown to improve the photocatalytic activities of the material in terms of OH radical generation and hydrogen evolution.
Abstract: Graphitic (g)-C3N4 with a layered structure has the potential of forming graphene-like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g-C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top-down strategy, namely, thermal oxidation etching of bulk g-C3N4 in air. Compared to the bulk g-C3N4, the highly anisotropic 2D-nanosheets possess a high specific surface area of 306 m2 g-1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in-plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g-C3N4 nanosheets have been remarkably improved in terms of OH radical generation and photocatalytic hydrogen evolution.

2,900 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed a method for Chinese Academia, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd., Shenyang 110016, Peoples R China.
Abstract: [Zhou, Guangmin; Li, Feng; Zhang, Lili; Li, Na; Wu, Zhong-Shuai; Wen, Lei; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Wang, Da-Wei; Lu, Gao Qing (Max)] Univ Queensland, AIBN, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia.;Li, F (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;fli@imr.ac.cn cheng@imr.ac.cn

1,752 citations

Journal ArticleDOI
Na Li1, Gang Liu1, Chao Zhen1, Feng Li1, Lili Zhang1, Hui-Ming Cheng1 
TL;DR: Li, Na, Liu, Gang, Zhen, Chao; Li, Feng, Zhang, Lili; Cheng, Hui-Ming as mentioned in this paper, Shenyang National Lab Mat Sci, 72 Wenhua RD, Shenyang 110016, Peoples R China;fli et al.
Abstract: [Li, Na; Liu, Gang; Zhen, Chao; Li, Feng; Zhang, Lili; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Li, N (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua RD, Shenyang 110016, Peoples R China;fli@imr.ac.cn cheng@imr.ac.cn

615 citations

Journal ArticleDOI
01 Apr 2011-Carbon
TL;DR: In this paper, the electrical properties of the GNS/HDPE and MWCNT composites were comparatively studied, and it was found that the percolation threshold of GNS and HDPE composites (1 vol.%) was much higher than that of the HPDE composite (0.15 vol.%).

385 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations showed that oxygen atoms can enhance the capture of -CH(x), and consequently facilitate the growth of SWCNTs on oxygen-containing SiO(x) NPs, suggesting a vapor-solid-solid growth mechanism.
Abstract: To understand in-depth the nature of the catalyst and the growth mechanism of single-walled carbon nanotubes (SWCNTs) on a newly developed silica catalyst, we performed this combined experimental and theoretical study. In situ transmission electron microscopy (TEM) observations revealed that the active catalyst for the SWCNT growth is solid and amorphous SiO(x) nanoparticles (NPs), suggesting a vapor-solid-solid growth mechanism. From in situ TEM and chemical vapor deposition growth experiments, we found that oxygen plays a crucial role in SWCNT growth in addition to the well-known catalyst size effect. Density functional theory calculations showed that oxygen atoms can enhance the capture of-CH(x) and consequently facilitate the growth of SWCNTs on oxygen-containing SiO(x) NPs.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.

3,118 citations

Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations