scispace - formally typeset
Search or ask a question
Author

Limei Zhai

Bio: Limei Zhai is an academic researcher from Civil Aviation Authority of Singapore. The author has contributed to research in topics: Fertilizer & Environmental science. The author has an hindex of 23, co-authored 62 publications receiving 1603 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
03 Dec 2014-PLOS ONE
TL;DR: It is concluded that biochar can be used under conditions where NH4 +-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3 −-N pollution.
Abstract: Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4+-N) and nitrate N (NO3−-N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4+-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4+-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4+-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg−1 adsorbed 2.3 mg NH4+-N g−1 in solutions with 50 mg NH4+ L−1). Compared with NH4+-N, none of NO3−-N was adsorbed to biochars at different NO3− concentrations. Instead, some NO3−-N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4+-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3−-N pollution.

447 citations

Journal ArticleDOI
TL;DR: The buffering capacity of the AD system was improved by the biochar through accelerating the transformation of macromolecular substances to dissolved substrates and reducing the contents of soluble salts, total ammonia nitrogen, and free ammonia.

149 citations

Journal ArticleDOI
TL;DR: It is found that the use of plastic mulch can indeed increase crop yields on average by 25%-42% in the immediate season due to the increase of soil temperature and moisture, but the unabated accumulation of film residues in the field negatively impacts its physicochemical properties linked to healthy soil and threatens food production in the long term.
Abstract: Plastic pollution is a global concern given its prevalence in aquatic and terrestrial ecosystems. Studies have been conducted on the distribution and impact of plastic pollution in marine ecosystems, but little is known on terrestrial ecosystems. Plastic mulch has been widely used to increase crop yields worldwide, yet the impact of plastic residues in cropland soils to soil health and crop production in the long term remained unclear. In this paper, using a global meta-analysis, we found that the use of plastic mulch can indeed increase crop yields on average by 25%-42% in the immediate season due to the increase of soil temperature (+8%) and moisture (+17%). However, the unabated accumulation of film residues in the field negatively impacts its physicochemical properties linked to healthy soil and threatens food production in the long term. It has multiple negative impacts on plant growth including crop yield (at the mean rate of -3% for every additional 100 kg/ha of film residue), plant height (-2%) and root weight (-5%), and soil properties including soil water evaporation capacity (-2%), soil water infiltration rate (-8%), soil organic matter (-0.8%) and soil available phosphorus (-5%) based on meta-regression. Using a nationwide field survey of China, the largest user of plastic mulch worldwide, we found that plastic residue accumulation in cropland soils has reached 550,800 tonnes, with an estimated 6%-10% reduction in cotton yield in some polluted sites based on current level of plastic residue content. Immediate actions should be taken to ensure the recovery of plastic film mulch and limit further increase in film residue loading to maintain the sustainability of these croplands.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of maize straw biochar on phosphorus availability in two soils with different P sorption capacities (iron and aluminum dominated slight acid Red earth and calcium dominated alkaline Fluvo-aquic soil).
Abstract: This study investigated the effects of maize (Zea mays L.) straw biochar on phosphorus (P) availability in two soils with different P sorption capacities (iron and aluminum dominated slight acid Red earth and calcium dominated alkaline Fluvo-aquic soil). A 42-day incubation experiment was conducted to study how applications of biochar at different rates (0, 2, 4, and 8 % soil, w/w), in combination with and without mineral KH2PO4 fertilizer, affected contents of soil Olsen-P and soil microbial biomass P (SMB-P) and phosphomonoesterase activity. In addition, P sorption characteristics of soils amended with biochar, as well as main properties of the biochar and the soils, were determined. Application of 8 % biochar after 42 days of incubation substantially increased soil Olsen-P from 3 to 46 mg kg−1 in Red earth and from 13 to 137 mg kg−1 in Fluvo-aquic soil and increased SMB-P from 1 to 9 mg kg−1 in Red earth and from 9 to 21 mg kg−1 in Fluvo-aquic soil. The increase was mainly due to high concentrations of P in the ash fraction (77 % of total biochar P). Biochar effect on soil Olsen-P and SMB-P increased by higher biochar application rates and by lower P sorption capacity. Biochar application significantly reduced acid phosphomonoesterase activity in Red earth and alkaline phosphomonoesterase activity in Fluvo-aquic soil due to large amount of inorganic P added. We conclude that maize straw biochar is promising to potentially improve soil P availability in low-P soils, but further research at field scale is needed to confirm this.

139 citations

Journal ArticleDOI
Junting Pan, Junyi Ma1, Limei Zhai, Tao Luo, Zili Mei, Hongbin Liu 
TL;DR: The key roles of biochar include enhancing and equilibrating hydrolysis, acidogenesis-acetogenesis, and methanogenesis, as well as alleviating inhibitor stress were summarized and the potential mechanism and future explorative directions of bio char enhancing AD performance were pinpointed.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The influence of spray programs on the fauna of apple orchards in Nova Scotia XIV and its relation to the natural control of the oyster shell scale Lepidosaphes ulmi L.
Abstract: B6nassy, C., 1955. R6marques sur deux Aphelinid6s: Aphelinus mytilaspidis Le Baron et Aphytis proclia Walker. Annls l~piphyt. 6: 11-17. Lord, F. T. & MacPhee, A. W., 1953. The influence of spray programs on the fauna of apple orchards in Nova Scotia II. Oyster shell scale. Can. Ent. 79: 196-209. Pickett, A. D., 1946. A progress report on long term spray programs. Rep. Nova Scotia Fruit Grow. Ass. 83 : 27-31. Pickett, A. D., 1967. The influence of spray programs on the fauna of apple orchards in Nova Scotia XIV. Can. Ent. 97: 816-821. Tothill, J. D., 1918. The predacious mite Hemisarcoptes malus Shimer and its relation to the natural control of the oyster shell scale Lepidosaphes ulmi L. Agric. Gaz. Can. 5 : 234-239.

1,506 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the preparation, characterization, modification, and especially environmental application of biochar, based on more than 200 papers published in recent 10 year, to provide an overview of Biochar with a particular on its environmental application.

1,017 citations

Journal ArticleDOI
TL;DR: This review discusses various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers and concludes that this technology is ready for commercial exploitation in various regions worldwide.
Abstract: The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems.In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

847 citations

Journal ArticleDOI
TL;DR: In this review, multiple and multilevel structures of biochars are interpreted based on their elemental compositions, phase components, surface properties, and molecular structures to design a "smart" biochar for environmentally sustainable applications.
Abstract: Biochar is the carbon-rich product of the pyrolysis of biomass under oxygen-limited conditions, and it has received increasing attention due to its multiple functions in the fields of climate change mitigation, sustainable agriculture, environmental control, and novel materials. To design a “smart” biochar for environmentally sustainable applications, one must understand recent advances in biochar molecular structures and explore potential applications to generalize upon structure–application relationships. In this review, multiple and multilevel structures of biochars are interpreted based on their elemental compositions, phase components, surface properties, and molecular structures. Applications such as carbon fixators, fertilizers, sorbents, and carbon-based materials are highlighted based on the biochar multilevel structures as well as their structure-application relationships. Further studies are suggested for more detailed biochar structural analysis and separation and for the combination of macros...

520 citations

Journal ArticleDOI
03 Dec 2014-PLOS ONE
TL;DR: It is concluded that biochar can be used under conditions where NH4 +-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3 −-N pollution.
Abstract: Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4+-N) and nitrate N (NO3−-N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4+-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4+-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4+-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg−1 adsorbed 2.3 mg NH4+-N g−1 in solutions with 50 mg NH4+ L−1). Compared with NH4+-N, none of NO3−-N was adsorbed to biochars at different NO3− concentrations. Instead, some NO3−-N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4+-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3−-N pollution.

447 citations