scispace - formally typeset
Search or ask a question
Author

Limin Wang

Bio: Limin Wang is an academic researcher from China Agricultural University. The author has contributed to research in topics: Humulus lupulus & Chemistry. The author has co-authored 4 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the evaluation of bitterness qualities and characteristic metabolite profiles in Krausen during beer fermentation were investigated using a UHPLC-Q/TOF-MS-based metabolomics approach and sensory evaluation analysis.

7 citations

Journal ArticleDOI
TL;DR: In this article, three hop varieties (TP1, TP2, TP3, and QTF) in China were sampled to investigate the correlation between the harvest maturity and these three components, which indicated that polyphenols synthesized earlier than hop bitter acids, followed by the aroma compounds.

4 citations

Journal ArticleDOI
TL;DR: In this article, the primary enzymes involved in the three major pathways of hops' phytochemical composition are summarized, including branched-chain aminotransferase (BCAT), BRKDH, carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase(DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (H
Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.

3 citations

Journal ArticleDOI
TL;DR: The biotransformation of monoterpenes and monoterpene alcohols in bacteria and yeast, and potential enzymes related to the transformation of them are reviewed, andCrystal structures of these enzymes have been partially resolved.
Abstract: Monoterpenes are important flavor and fragrance compounds in food. In beer, the monoterpenes mainly come from hops added during boiling process. Biotransformations of monoterpene which occurred during fermentation conferred beer with various kinds of aroma profiles, which can be mainly attributed to the contribution of enzymes in yeast. However, there are few reports on the identification and characterization of these enzymes in yeast. Illustrating the structure and functions of key enzymes related to transformations will broaden their potential applications in beer or other foodstuffs. Monoterpenoids including terpene hydrocarbons (limonene, myrcene, and pinene) and terpene alcohol (linalool, geraniol, nerol, and citronellol) gave the beer flower-like or fruit-like aroma. The biotransformation of monoterpenes and monoterpene alcohols in bacteria and yeast, and potential enzymes related to the transformation of them are reviewed here. Enzymes primarily are dehydrogenases including linalool dehydrogenase/isomerase, geraniol/geranial dehydrogenase, nerol dehydrogenase and citronellol dehydrogenase. Most of them are substrate-specific or substrate-specific after modifications by biotechnology methods, and part of them have been expressed in E. coli, while the purification and catalytic rate is very low. Efforts should be made to acquire abundant enzymes, and to fabricate enzyme-expressing yeast, which can be further applied in beer fermentation system.highlightsMonoterpenoids contributed to the flavor of food, especially beer.Transformation of monoterpenoids occurred during fermentation.Various kinds of enzymes are involved in the transformation of monoterpenoids in bacteria, yeast, etc.Crystal structures of these enzymes have been partially resolved.Few enzymes are further applied in food system to obtain abundant flavor.

2 citations


Cited by
More filters
Journal ArticleDOI
01 Sep 2022-Foods
TL;DR: In this article , a correlation analysis of olfactory, sensory, electronic nose, and GC-MS data was conducted to determine the relationship between the oolong tea aroma and technical aroma.
Abstract: The oolong tea aroma is shown to consist of cultivar aroma and technical aroma in this study based on the aroma differences between oolong tea products of cultivars of different suitability, as determined by correlation analysis of olfactory, sensory, electronic nose, and GC-MS data. Human senses were significantly affected by the aroma components, which included eight terpene metabolites (β-Ocimene, (Z)-Furan linalool oxide, linalool, (3E)-4,8-Dimethyl-1,3,7-nonatriene, (E)-Pyranoid linalool oxide, γ-Elemene, Humulene, (Z,E)-α-Farnesene), three carotenoid metabolites (β-Ionone, (Z)-Geranylacetone and 6-methyl-5-Hepten -2-one), three lipid metabolites ((Z)-3-Hexenyl (Z)-3-hexenoate, Butanoic acid hexyl ester, and (Z)-Jasmone), four amino acid metabolites (Methyl salicylate, Geranyl isovalerate, indole, and Phenylethyl alcohol), and six thermal reaction products (2-Pentylfuran, Octanal, Decanal, (E,E)-2,4-Nonadienal, (Z)-2-Decenal, and (E)-2-Undecenal). Meanwhile, several aroma compounds (such as (E)-Nerolidol and α-Farnesene), mainly comprising the “technical aroma” formed in the processing mode, were noted to be less closely related to cultivar suitability. This study sheds light on the aroma characteristics of different tea cultivars for oolong tea processing.

6 citations

Journal ArticleDOI
TL;DR: In this study, gas chromatography-mass spectrometry was performed and the obtained datasets were analyzed with multivariate statistical methods to investigate changes in flavor substances in wine during fermentation, showing significant differences in the metabolites of wine treated with various pesticides.
Abstract: The application of pesticides is critical during the growth of high-quality grape for wine making. However, pesticide residues have significant influence on the wine flavor. In this study, gas chromatography-mass spectrometry (GC-MS) was performed and the obtained datasets were analyzed with multivariate statistical methods to investigate changes in flavor substances in wine during fermentation. The principal component analysis (PCA) score plot showed significant differences in the metabolites of wine treated with various pesticides. In trials using five pesticides (hexaconazole, difenoconazole, flutriafol, tebuconazole, and propiconazole), more than 86 metabolites were changed. Most of these metabolites were natural flavor compounds, like carbohydrates, amino acids, and short-chain fatty acids and their derivatives, which essentially define the appearance, aroma, flavor, and taste of the wine. Moreover, the five pesticides added to grape pulp exhibited different effects on the metabolic pathways, involving mainly alanine, aspartate and glutamate metabolism, butanoate metabolism, arginine, and proline metabolism. The results of this study will provide new insight into the potential impact of pesticide residues on the metabolites and sensory profile of wine during fermentation.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the genetic and chemical diversity of fifty wild hops collected from different locations in Northern France and compared these wild hops to ten commercial varieties and three heirloom varieties cultivated in the same sampled geographical area.

2 citations