scispace - formally typeset
Search or ask a question
Author

Liming Chen

Bio: Liming Chen is an academic researcher from École centrale de Lyon. The author has contributed to research in topics: Facial recognition system & Feature extraction. The author has an hindex of 49, co-authored 392 publications receiving 8747 citations. Previous affiliations of Liming Chen include National Sun Yat-sen University & University of Lyon.


Papers
More filters
Journal ArticleDOI
01 Nov 2011
TL;DR: As a typical application of the LBP approach, LBP-based facial image analysis is extensively reviewed, while its successful extensions, which deal with various tasks of facial imageAnalysis, are also highlighted.
Abstract: Local binary pattern (LBP) is a nonparametric descriptor, which efficiently summarizes the local structures of images. In recent years, it has aroused increasing interest in many areas of image processing and computer vision and has shown its effectiveness in a number of applications, in particular for facial image analysis, including tasks as diverse as face detection, face recognition, facial expression analysis, and demographic classification. This paper presents a comprehensive survey of LBP methodology, including several more recent variations. As a typical application of the LBP approach, LBP-based facial image analysis is extensively reviewed, while its successful extensions, which deal with various tasks of facial image analysis, are also highlighted.

895 citations

Journal ArticleDOI
TL;DR: Those supramolecular gels responding to sonication and mechanical stress offer a wide range of applications in fields such as smart and adaptive materials, switches, drug control and release, and tissue engineering.
Abstract: In this review, we focus on the types of smart supramolecular gels whose self-assembly processes are affected or even triggered by physical forces including sonication and mechanical stress (mechanical force). The types of gels that are responsive to sonication and mechanical stress are examined and summarised. The gels exhibit non-covalent interactions among the gelator molecules and show dynamic and reversible properties controlled by the stimuli. Upon stimulation, the gelators cause instant and in situ gelation of organic solvents or water with different modes and outcomes of self-assembly. On the other hand, sonication and mechanical stress, as external factors, can give rise to dynamic changes in microscopic morphology, optical properties, etc. Certain thixotropic supramolecular gels exhibit perfect self-healing characteristics. The driving forces and the mechanism of the self-assembly process and the responsive outcome of morphological and spectroscopic changes are discussed. Those supramolecular gels responding to sonication and mechanical stress offer a wide range of applications in fields such as smart and adaptive materials, switches, drug control and release, and tissue engineering.

398 citations

Journal ArticleDOI
TL;DR: A large video database, namely LIRIS-ACCEDE, is proposed, which consists of 9,800 good quality video excerpts with a large content diversity and provides four experimental protocols and a baseline for prediction of emotions using a large set of both visual and audio features.
Abstract: Research in affective computing requires ground truth data for training and benchmarking computational models for machine-based emotion understanding. In this paper, we propose a large video database, namely LIRIS-ACCEDE, for affective content analysis and related applications, including video indexing, summarization or browsing. In contrast to existing datasets with very few video resources and limited accessibility due to copyright constraints, LIRIS-ACCEDE consists of 9,800 good quality video excerpts with a large content diversity. All excerpts are shared under creative commons licenses and can thus be freely distributed without copyright issues. Affective annotations were achieved using crowdsourcing through a pair-wise video comparison protocol, thereby ensuring that annotations are fully consistent, as testified by a high inter-annotator agreement, despite the large diversity of raters’ cultural backgrounds. In addition, to enable fair comparison and landmark progresses of future affective computational models, we further provide four experimental protocols and a baseline for prediction of emotions using a large set of both visual and audio features. The dataset (the video clips, annotations, features and protocols) is publicly available at: http://liris-accede.ec-lyon.fr/.

270 citations

Journal ArticleDOI
TL;DR: In this paper, a large scale benchmark of machine learning methods for the prediction of the thermodynamic stability of solids is presented, which includes all possible perovskite and anti-perovskiite crystals that can be generated with elements from hydrogen to bismuth, excluding rare gases and lanthanides.
Abstract: We perform a large scale benchmark of machine learning methods for the prediction of the thermodynamic stability of solids We start by constructing a data set that comprises density functional theory calculations of around 250000 cubic perovskite systems This includes all possible perovskite and antiperovskite crystals that can be generated with elements from hydrogen to bismuth, excluding rare gases and lanthanides Incidentally, these calculations already reveal a large number of systems (around 500) that are thermodynamically stable but that are not present in crystal structure databases Moreover, some of these phases have unconventional compositions and define completely new families of perovskites This data set is then used to train and test a series of machine learning algorithms to predict the energy distance to the convex hull of stability In particular, we study the performance of ridge regression, random forests, extremely randomized trees (including adaptive boosting), and neural networks

227 citations

Proceedings ArticleDOI
29 Mar 2018
TL;DR: The Jacquard dataset as mentioned in this paper is a large-scale synthetic dataset with ground truth, which contains both RGB-D images and annotations of successful grasping positions based on grasp attempts performed in a simulated environment.
Abstract: Grasping skill is a major ability that a wide number of real-life applications require for robotisation. State-of-the-art robotic grasping methods perform prediction of object grasp locations based on deep neural networks. However, such networks require huge amount of labeled data for training making this approach often impracticable in robotics. In this paper, we propose a method to generate a large scale synthetic dataset with ground truth, which we refer to as the Jacquard grasping dataset. Jacquard is built on a subset of ShapeNet, a large CAD models dataset, and contains both RGB-D images and annotations of successful grasping positions based on grasp attempts performed in a simulated environment. We carried out experiments using an off-the-shelf CNN, with three different evaluation metrics, including real grasping robot trials. The results show that Jacquard enables much better generalization skills than a human labeled dataset thanks to its diversity of objects and grasping positions. For the purpose of reproducible research in robotics, we are releasing along with the Jacquard dataset a web interface for researchers to evaluate the successfulness of their grasping position detections using our dataset.

203 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations