scispace - formally typeset
Search or ask a question
Author

Liming Xie

Bio: Liming Xie is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Raman spectroscopy & Graphene. The author has an hindex of 42, co-authored 114 publications receiving 14665 citations. Previous affiliations of Liming Xie include Chinese Academy of Sciences & National Institute of Standards and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution was developed, which exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER).
Abstract: Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS2/RGO hybrid material possessed nanoscopic few-layer MoS2 structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS2 particles grown freely in solution without GO. The MoS2/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS2 catalysts. A Tafel slope of ∼41 mV/decade was measured for MoS2 catalysts in the HER for the first time; this exceeds by far the activity of previous MoS2 catalysts and results from the abundance of catalytic edge sites on the MoS2 nanoparticles and the excellent electrical coupling to the underlying graphene network. The ∼41 mV/decade Tafel slope suggested the Volmer–Heyrovsky mec...

4,370 citations

Journal ArticleDOI
TL;DR: It is shown that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions.
Abstract: Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis.

1,471 citations

Journal ArticleDOI
TL;DR: A comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition and influence of defects on electronic structure and charge-carrier mobility is predicted by calculation and observed by electric transport measurement.
Abstract: Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition.

1,109 citations

Journal ArticleDOI
TL;DR: It is observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO(2)/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayers graphene.
Abstract: Graphene is a monolayer of carbon atoms packed into a two-dimensional (2D) honeycomb crystal structure, which is a special material with many excellent properties. In the present study, we will discuss the possibility that graphene can be used as a substrate for enhancing Raman signals of adsorbed molecules. Here, phthalocyanine (Pc), rhodamine 6G (R6G), protoporphyin IX (PPP), and crystal violet (CV), which are popular molecules widely used as a Raman probe, are deposited equally on graphene and a SiO2/Si substrate using vacuum evaporation or solution soaking. By comparing the Raman signals of molecules on monolayer graphene and on a SiO2/Si substrate, we observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO2/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayer graphene. For solution soaking, the Raman signals of the molecules are visible even though the concentration is low to 10(-8) mol/L or less. What's more interesting, the enhanced efficiencies are quite different on monolayer, few-layer, multilayer graphene, graphite, and highly ordered pyrolytic graphite (HOPG). The Raman signals of molecules on multilayer graphene are even weaker than on a SiO2/Si substrate, and the signals are even invisible on graphite and HOPG. Taking the Raman signals on the SiO2/Si substrate as a reference, Raman enhancement factors on the surface of monolayer graphene can be obtained using Raman intensity ratios. The Raman enhancement factors are quite different for different peaks, changing from 2 to 17. Furthermore, we found that the Raman enhancement factors can be distinguished through three classes that correspond to the symmetry of vibrations of the molecule. We attribute this enhancement to the charge transfer between graphene and the molecules, which result in a chemical enhancement. This is a new phenomenon for graphene that will expand the application of graphene to microanalysis and is good for studying the basic properties of both graphene and SERS.

893 citations

Journal ArticleDOI
TL;DR: The deep tissue penetration and high spatial and temporal resolution of NIR-II imaging allow for precise quantifications of blood velocity in both normal and ischemic femoral arteries, which are beyond the capabilities of ultrasonography at lower blood velocities.
Abstract: In vivo real-time epifluorescence imaging of mouse hind limb vasculatures in the second near-infrared region (NIR-II) is performed using single-walled carbon nanotubes as fluorophores Both high spatial (∼30 μm) and temporal (<200 ms per frame) resolution for small-vessel imaging are achieved at 1-3 mm deep in the hind limb owing to the beneficial NIR-II optical window that affords deep anatomical penetration and low scattering This spatial resolution is unattainable by traditional NIR imaging (NIR-I) or microscopic computed tomography, and the temporal resolution far exceeds scanning microscopic imaging techniques Arterial and venous vessels are unambiguously differentiated using a dynamic contrast-enhanced NIR-II imaging technique on the basis of their distinct hemodynamics Further, the deep tissue penetration and high spatial and temporal resolution of NIR-II imaging allow for precise quantifications of blood velocity in both normal and ischemic femoral arteries, which are beyond the capabilities of ultrasonography at lower blood velocities

741 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations