scispace - formally typeset
Search or ask a question
Author

Limor Zwi-Dantsis

Bio: Limor Zwi-Dantsis is an academic researcher from Imperial College London. The author has contributed to research in topics: Induced pluripotent stem cell & Stem cell. The author has an hindex of 8, co-authored 10 publications receiving 1407 citations. Previous affiliations of Limor Zwi-Dantsis include Technion – Israel Institute of Technology.

Papers
More filters
Journal ArticleDOI
10 Mar 2011-Nature
TL;DR: The ability of human iPSC technology to model the abnormal functional phenotype of an inherited cardiac disorder and to identify potential new therapeutic agents represents a promising paradigm to study disease mechanisms, optimize patient care, and aid in the development of new therapies.
Abstract: The ability to generate patient-specific human induced pluripotent stem cells (iPSCs) offers a new paradigm for modelling human disease and for individualizing drug testing. Congenital long QT syndrome (LQTS) is a familial arrhythmogenic syndrome characterized by abnormal ion channel function and sudden cardiac death. Here we report the development of a patient/disease-specific human iPSC line from a patient with type-2 LQTS (which is due to the A614V missense mutation in the KCNH2 gene). The generated iPSCs were coaxed to differentiate into the cardiac lineage. Detailed whole-cell patch-clamp and extracellular multielectrode recordings revealed significant prolongation of the action-potential duration in LQTS human iPSC-derived cardiomyocytes (the characteristic LQTS phenotype) when compared to healthy control cells. Voltage-clamp studies confirmed that this action-potential-duration prolongation stems from a significant reduction of the cardiac potassium current I(Kr). Importantly, LQTS-derived cells also showed marked arrhythmogenicity, characterized by early-after depolarizations and triggered arrhythmias. We then used the LQTS human iPSC-derived cardiac-tissue model to evaluate the potency of existing and novel pharmacological agents that may either aggravate (potassium-channel blockers) or ameliorate (calcium-channel blockers, K(ATP)-channel openers and late sodium-channel blockers) the disease phenotype. Our study illustrates the ability of human iPSC technology to model the abnormal functional phenotype of an inherited cardiac disorder and to identify potential new therapeutic agents. As such, it represents a promising paradigm to study disease mechanisms, optimize patient care (personalized medicine), and aid in the development of new therapies.

1,011 citations

Journal ArticleDOI
01 Apr 2011-PLOS ONE
TL;DR: This study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca2+ store in hiPSC-CMs and demonstrates the dependency of whole-cell [Ca2+]i transients in hi PSCs on both sarcolemmal Ca2+.
Abstract: Background The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca2+-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs).

179 citations

Journal ArticleDOI
TL;DR: A novel concept for the encapsulation of bioactive proteins in DNA flowers (DNF) while maintaining the activity of protein payloads is reported, and it is demonstrated that the DNF can deliver payloads of cytotoxic protein without a loss in its biological function and structural integrity.
Abstract: Inspired by biological systems, many biomimetic methods suggest fabrication of functional materials with unique physicochemical properties. Such methods frequently generate organic-inorganic composites that feature highly ordered hierarchical structures with intriguing properties, distinct from their individual components. A striking example is that of DNA-inorganic hybrid micro/nanostructures, fabricated by the rolling circle technique. Here, a novel concept for the encapsulation of bioactive proteins in DNA flowers (DNF) while maintaining the activity of protein payloads is reported. A wide range of proteins, including enzymes, can be simultaneously associated with the growing DNA strands and Mg2 PPi crystals during the rolling circle process, ultimately leading to the direct immobilization of proteins into DNF. The unique porous structure of this construct, along with the abundance of Mg ions and DNA molecules present, provides many interaction sites for proteins, enabling high loading efficiency and enhanced stability. Further, as a proof of concept, it is demonstrated that the DNF can deliver payloads of cytotoxic protein (i.e., RNase A) to the cells without a loss in its biological function and structural integrity, resulting in highly increased cell death compared to the free protein.

102 citations

Journal ArticleDOI
TL;DR: Poly(ethylene dioxythiophene) with functional pendant groups bearing double bonds is synthesized and employed for the fabrication of electroactive hydrogels with advantageous characteristics: covalently cross-linked porous 3D scaffolds with notable swelling ratio, appropriate mechanical properties, electroactivity in physiological conditions, and suitability for proliferation and differentiation of C2C12 cells.
Abstract: Poly(ethylene dioxythiophene) with functional pendant groups bearing double bonds is synthesized and employed for the fabrication of electroactive hydrogels with advantageous characteristics: covalently cross-linked porous 3D scaffolds with notable swelling ratio, appropriate mechanical properties, electroactivity in physiological conditions, and suitability for proliferation and differentiation of C2C12 cells. This is a new approach for the fabrication of conductive engineered constructs.

92 citations

Journal ArticleDOI
TL;DR: Human-induced pluripotent stem cells can be established from patients with advanced heart failure and coaxed to differentiate into cardiomyocytes, which can integrate with pre-existing cardiac tissue.
Abstract: Aims Myocardial cell replacement therapies are hampered by a paucity of sources for human cardiomyocytes and by the expected immune rejection of allogeneic cell grafts. The ability to derive patient-specific human-induced pluripotent stem cells (hiPSCs) may provide a solution to these challenges. We aimed to derive hiPSCs from heart failure (HF) patients, to induce their cardiomyocyte differentiation, to characterize the generated hiPSC-derived cardiomyocytes (hiPSC-CMs), and to evaluate their ability to integrate with pre-existing cardiac tissue. Methods and results Dermal fibroblasts from two HF patients were reprogrammed by retroviral delivery of Oct4 , Sox2 , and Klf4 or by using an excisable polycistronic lentiviral vector. The resulting HF-hiPSCs displayed adequate reprogramming properties and could be induced to differentiate into cardiomyocytes with the same efficiency as control hiPSCs (derived from human foreskin fibroblasts). Gene expression and immunostaining studies confirmed the cardiomyocyte phenotype of the differentiating HF-hiPSC-CMs. Multi-electrode array recordings revealed the development of a functional cardiac syncytium and adequate chronotropic responses to adrenergic and cholinergic stimulation. Next, functional integration and synchronized electrical activities were demonstrated between hiPSC-CMs and neonatal rat cardiomyocytes in co-culture studies. Finally, in vivo transplantation studies in the rat heart revealed the ability of the HF-hiPSC-CMs to engraft, survive, and structurally integrate with host cardiomyocytes. Conclusions Human-induced pluripotent stem cells can be established from patients with advanced heart failure and coaxed to differentiate into cardiomyocytes, which can integrate with host cardiac tissue. This novel source for patient-specific heart cells may bring a unique value to the emerging field of cardiac regenerative medicine.

85 citations


Cited by
More filters
Journal ArticleDOI
19 Jan 2012-Nature
TL;DR: The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies.
Abstract: The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. While the field is racing ahead, some researchers are pausing to evaluate whether induced pluripotent stem cells are indeed the true equivalents of embryonic stem cells and whether subtle differences between these types of cell might affect their research applications and therapeutic potential.

1,064 citations

Journal ArticleDOI
TL;DR: Progress in promoting the maturation of the hPSC cardiomyocytes is discussed, in the context of the current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes.
Abstract: The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

795 citations

Journal ArticleDOI
22 Jul 2011-Cell
TL;DR: In this article, the authors proposed to generate sets of isogenic disease and control human pluripotent stem cells that differ exclusively at either of two susceptibility variants for Parkinson's disease by modifying the underlying point mutations in the α-synuclein gene.

713 citations

Journal ArticleDOI
TL;DR: Detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes concludes that they have ionic currents and channel gating properties underlying their APs and EADs that are quantitatively similar to those reported for human cardiac myocytes.
Abstract: Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully cha...

668 citations

Journal ArticleDOI
TL;DR: A review of the basic biology underlying the differentiation of human pluripotent cells to cardiac lineages can be found in this paper, where the authors describe current state-of-the-art protocols, as well as ongoing refinements.
Abstract: Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.

626 citations