scispace - formally typeset
Search or ask a question
Author

Lin Hu

Bio: Lin Hu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Magnetic field & Kirkendall effect. The author has an hindex of 15, co-authored 28 publications receiving 1848 citations. Previous affiliations of Lin Hu include University of Science and Technology of China & Hefei Institutes of Physical Science.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the thermal decomposition of Co3O4 nanoparticles of cobalt-based Prussian blue analogues at different temperatures was used to obtain high discharge capacity of 800, 970, 828, 854, and 651 mAhg.
Abstract: Co3O4 nanoparticles have been prepared by a facile strategy, which involves the thermal decomposition of nanoparticles of cobalt-based Prussian blue analogues at different temperatures. The nanoparticles prepared at 450, 550, 650, 750, and 850 °C exhibited a high discharge capacity of 800, 970, 828, 854, and 651 mAhg–1, respectively, after 30 cycles at a current density of 50 mAg–1. The nanocages produced at 550 °C show the highest lithium storage capacity. It is found that the nanocages display nanosize grains, hollow structure, a porous shell, and large specific surface area. At the temperature higher than 650 °C, the samples with larger grains, better crystallinity, and lower specific surface area can be obtained. It is found that the size, crystallinity, and morphology of nanoparticles have different effects on electrochemical performance. Better crystallinity is able to enhance the initial discharge capacity, while porous structure can reduce the irreversible loss. Therefore, the optimal size, crysta...

400 citations

Journal ArticleDOI
TL;DR: Hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries and found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery.
Abstract: The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAhg−1 over 30 cycles. The reasonable property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions' insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is beneficial to the formation of Li2O and Si, contributing to the high reversible capacity.

342 citations

Journal ArticleDOI
TL;DR: The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn2O4/electrolyte contact area, shorten the Li+ ion diffusion length in the nanosheeets, and accommodate the strain induced by the volume change during the electrochemical reaction.
Abstract: Herein, we report the feasibility to enhance the capacity and stability of CoMn(2)O(4) anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn(2)O(4)/electrolyte contact area, shorten the Li(+) ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn(2)O(4) hierarchical microspheres can achieve a good cycle ability and high rate capability.

286 citations

Journal ArticleDOI
TL;DR: This systematic review of NMOFs templates for the fabrication of hollow/porous functional materials that would result in improved physicochemical properties and provide insights to guide future research for LIBs applications aims to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow /porous nanostructured oxides and theirLIBs applications.
Abstract: Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from "dead pores"; pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g(-1) at a rate of 300 mA g(-1) was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g(-1)), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g(-1) at 50 mA g(-1)), nanobelts (1400 mA h g(-1) at 40 mA g(-1)) and nanoflowers (694 mA h g(-1) at 100 mA g(-1)). The capacity is also better than Co3O4 octahedra obtained by a one-step hydrothermal method (946 mA h g(-1) at 100 mA g(-1)). In this review, we will summarize the recent research advances on NMOFs-derived hollow/porous oxides as LIBs anodes. The enhanced lithium storage properties have been discussed in relation to their special structural parameters. Moreover, remarks on the current challenges and perspectives for future NMOFs applications are proposed. Through this systematic review, we aim to stress the importance of NMOFs templates for the fabrication of hollow/porous functional materials that would result in improved physicochemical properties and provide insights to guide future research for LIBs applications.

276 citations

Journal ArticleDOI
16 Jan 2019-ACS Nano
TL;DR: The phase-controlled synthesis of metallic and ambient-stable 2D MX2 with 1T octahedral coordination will endow these materials with superior performance compared with their semiconducting 2H coordination counterparts, and it is revealed that the as-synthesized 1T-MoS2 and1T-WS2 are ambient- stable for more than 1 year.
Abstract: The phase-controlled synthesis of metallic and ambient-stable 2D MX2 (M is Mo or W; X is S) with 1T octahedral coordination will endow these materials with superior performance compared with their semiconducting 2H coordination counterparts. We report a clean and facile route to prepare 1T-MoS2 and 1T-WS2 through hydrothermal processing under high magnetic fields. We reveal that the as-synthesized 1T-MoS2 and 1T-WS2 are ambient-stable for more than 1 year. Electrochemical measurements show that 1T-MoS2 performs much better than 2H-MoS2 as the anode for sodium ion batteries. These results can provide a clean and facile method to prepare ambient-stable 1T-phase MX2.

151 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize graphene analogous with high nitrogen content using a zeolitic imidazolate framework, which shows exceptional battery performances, but the nitrogen content is often quite low.
Abstract: Nitrogen-doped graphene can be used for lithium storage, but the nitrogen content is often quite low. Here, the authors synthesize graphene analogous with high nitrogen content using a zeolitic imidazolate framework, which show exceptional battery performances.

1,229 citations

Journal ArticleDOI
TL;DR: The unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and reactors, optical properties and applications, magnetic properties, energy storage, catalysis, biomedical applications, environmental remediation, and sensors are discussed.
Abstract: In this Review, we aim to provide an updated summary of the research related to hollow micro- and nanostructures, covering both their synthesis and their applications. After a brief introduction to the definition and classification of the hollow micro-/nanostructures, we discuss various synthetic strategies that can be grouped into three major categories, including hard templating, soft templating, and self-templating synthesis. For both hard and soft templating strategies, we focus on how different types of templates are generated and then used for creating hollow structures. At the end of each section, the structural and morphological control over the product is discussed. For the self-templating strategy, we survey a number of unconventional synthetic methods, such as surface-protected etching, Ostwald ripening, the Kirkendall effect, and galvanic replacement. We then discuss the unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and rea...

1,135 citations

Journal ArticleDOI
TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal–organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.

970 citations

Journal ArticleDOI
TL;DR: This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics and discusses the fundamental and applied aspects of this two-pronged approach.
Abstract: Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

908 citations