scispace - formally typeset
Search or ask a question
Author

Lin Lin Wang

Bio: Lin Lin Wang is an academic researcher from Southern Medical University. The author has contributed to research in topics: Ultimate tensile strength & Bond strength. The author has an hindex of 4, co-authored 13 publications receiving 1332 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The antibacterial mechanisms of NPs against bacteria and the factors that are involved are discussed and the limitations of current research are discussed.
Abstract: Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.

2,178 citations

Journal ArticleDOI
TL;DR: TiO2 nanoparticles are obtained a promising restorative material which yields favourable physical and anti-ageing properties and is biocompatible in in vitro cellular studies.

30 citations

Journal ArticleDOI
TL;DR: N nanoparticles are a promising antioral biofilm strategy and can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.
Abstract: Due to their excellent size, designability, and outstanding targeted antibacterial effects, nanoparticles have become a potential option for controlling oral biofilm-related infections. However, the formation of an oral biofilm is a dynamic process, and factors affecting the performance of antibiofilm treatments are complex. As such, when examining the existing literature on the antibiofilm effects of nanoparticles, attention should be paid to the specific mechanisms of action at different stages of oral biofilm formation, as well as relevant influencing factors, in order to achieve an objective and comprehensive evaluation. This review is intended to detail the antibacterial mechanisms of nanoparticles during the four stages of the formation of oral biofilms: 1) acquired film formation; 2) bacterial adhesion; 3) early biofilm development; and 4) biofilm maturation. In addition, factors influencing the antibiofilm properties of nanoparticles are summarized from the aspects of nanoparticles themselves, biofilm models, and host factors. The limitations of current research and possible trends for future research are also discussed. In summary, nanoparticles are a promising antioral biofilm strategy. It is hoped that this review can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.

29 citations

Journal ArticleDOI
TL;DR: This study verified the feasibility of using PBO FRC composites as new intracanal post material and provided a new option for intracanAL post material development in the future.

8 citations

Journal ArticleDOI
TL;DR: IPS e.max all-ceramics system of HO series can produce clinically acceptable color match and have the capacity to mask a dark background such as a dark tooth or core buildup material.
Abstract: To evaluate the masking ability of IPS e.max all-ceramics system of HO series. IPS e.max Press HO ingots were fabricated into twenty cylindrical specimens (n=5) with the diameter of 13mm and four different thinknesses (0.4mm, 0.6mm, 0.8mm, 1.0mm). All specimens after veneered, gazed and cemented to metal substrate disks (thickness 3mm, diameter 13mm) were measured on both the white background and metal substrate disks background using a spectrophotometer and values of L, a and b were calculated to compare color differences among four groups. Meanwhile ΔE with the preselected required color (A2 color) were calculated. ΔE

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Abstract: The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.

1,328 citations

Journal ArticleDOI
TL;DR: The mechanism of antibiotic resistance in P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections.

908 citations

Journal ArticleDOI
TL;DR: The current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture are covered.
Abstract: Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. The application of nanotechnology to agriculture and food industries is resonant increased encumbrance because of the potential benefits ranging from enhanced food quality, safety to reduced agricultural inputs and enriched absorbing nanoscale nutrients from the soil. Agriculture, food and natural resources are a part of those challenges like sustainability, susceptibility, human health and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interest of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants.This study provides a review of the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

813 citations

Journal ArticleDOI
TL;DR: Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted and their production methods, physicochemical characterization, and pharmacokinetics are reviewed.
Abstract: Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.

629 citations

Journal ArticleDOI
TL;DR: This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.
Abstract: Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

612 citations