scispace - formally typeset
Search or ask a question
Author

Lin Wang

Bio: Lin Wang is an academic researcher from National University of Singapore. The author has contributed to research in topics: Scanning capacitance microscopy & Neuromorphic engineering. The author has an hindex of 18, co-authored 42 publications receiving 900 citations. Previous affiliations of Lin Wang include Institut des Nanotechnologies de Lyon.

Papers
More filters
Journal ArticleDOI
TL;DR: A memtransistor‐based artificial synapse is realized by integrating a memristor and selector transistor into a multiterminal device using monolayer polycrys‐talline‐MoS2 grown by a scalable chemical vapor deposition (CVD) process.
Abstract: Neuromorphic computing, which emulates the biological neural systems could overcome the high-power consumption issue of conventional vonNeumann computing. State-of-the-art artificial synapses made of twoterminal memristors, however, show variability in filament formation and limited capacity due to their inherent single presynaptic input design. Here, a memtransistor-based artificial synapse is realized by integrating a memristor and selector transistor into a multiterminal device using monolayer polycrys-talline-MoS2 grown by a scalable chemical vapor deposition (CVD) process. Notably, the memtransistor offers both drainand gate-tunable nonvolatile memory functions, which efficiently emulates the long-term potentiation/depression, spike-amplitude, and spike-timing-dependent plasticity of biological synapses. Moreover, the gate tunability function that is not achievable in two-terminal memristors, enables significant bipolar resistive states switching up to four orders-of-magnitude and high cycling endurance. First-principles calculations reveal a new resistive switching mechanism driven by the diffusion of double sulfur vacancy perpendicular to the MoS2 grain boundary, leading to a conducting switching path without the need for a filament forming process. The seamless integration of multiterminal memtransistors may offer another degree-of-freedom to tune the synaptic plasticity by a third gate terminal for enabling complex neuromorphic learning.

173 citations

Journal ArticleDOI
01 Mar 2018

128 citations

Journal ArticleDOI
TL;DR: The National Research Foundation, Prime Minister's Office, Singapore as discussed by the authors proposed a new scheme for returning Singapore Scientist Scheme (NRF-RSS2015-003) to support returning Singapore scientists.
Abstract: EPSRC (EP/L016087/1), A*STAR Science and Engineering Research Council (Grant No. 152-70-00013, and 152-70-00017), Singapore National Research Foundation’s Returning Singapore Scientist Scheme (Grant No. NRF-RSS2015-003), The National Research Foundation, Prime Minister's Office, Singapore.

111 citations

Journal ArticleDOI
TL;DR: A novel 2DM, black phosphorous carbide (b-PC) with a wide absorption spectrum up to 8000 nm is synthesized and a b-PC phototransistor with a tunable responsivity and response time at an excitation wavelength of 2004 nm is demonstrated.
Abstract: Photodetectors with broadband detection capability are desirable for sensing applications in the coming age of the internet-of-things. Although 2D layered materials (2DMs) have been actively pursued due to their unique optical properties, by far only graphene and black arsenic phosphorus have the wide absorption spectrum that covers most molecular vibrational fingerprints. However, their reported responsivity and response time are falling short of the requirements needed for enabling simultaneous weak-signal and high-speed detections. Here, a novel 2DM, black phosphorous carbide (b-PC) with a wide absorption spectrum up to 8000 nm is synthesized and a b-PC phototransistor with a tunable responsivity and response time at an excitation wavelength of 2004 nm is demonstrated. The b-PC phototransistor achieves a peak responsivity of 2163 A W-1 and a shot noise equivalent power of 1.3 fW Hz-1/2 at 2004 nm. In addition, it is shown that a response time of 0.7 ns is tunable by the gating effect, which renders it versatile for high-speed applications. Under the same signal strength (i.e., excitation power), its performance in responsivity and detectivity in room temperature condition is currently ahead of recent top-performing photodetectors based on 2DMs that operate with a small bias voltage of 0.2 V.

97 citations

Journal ArticleDOI
TL;DR: Hydrogen bonds containing spacers are used to synthesize highly luminescent perovskites with fully isolated lead-bromide octahedras and shed light on the origin of the emission.
Abstract: As one of next-generation semiconductors, hybrid halide perovskites with tailorable optoelectronic properties are promising for photovoltaics, lighting, and displaying. This tunability lies on variable crystal structures, wherein the spatial arrangement of halide octahedra is essential to determine the assembly behavior and materials properties. Herein, we report to manipulate their assembling behavior and crystal dimensionality by locally collective hydrogen bonding effects. Specifically, a unique urea-amide cation is employed to form corrugated 1D crystals by interacting with bromide atoms in lead octahedra via multiple hydrogen bonds. Further tuning the stoichiometry, cations are bonded with water molecules to create a larger spacer that isolates individual lead bromide octahedra. It leads to zero-dimension (0D) single crystals, which exhibit broadband 'warm' white emission with photoluminescence quantum efficiency 5 times higher than 1D counterpart. This work suggests a feasible strategy to modulate the connectivity of octahedra and consequent crystal dimensionality for the enhancement of their optoelectronic properties.

92 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented in this paper, where a brief insight into the detection mechanisms of 2D material photodeterceptors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photoderectors is provided.
Abstract: 2D material based photodetectors have attracted many research projects due to their unique structures and excellent electronic and optoelectronic properties. These 2D materials, including semimetallic graphene, semiconducting black phosphorus, transition metal dichalcogenides, insulating hexagonal boron nitride, and their various heterostructures, show a wide distribution in bandgap values. To date, hundreds of photodetectors based on 2D materials have been reported. Here, a review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented. First, a brief insight into the detection mechanisms of 2D material photodetectors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photodetectors is provided. Then, the recent progress on 2D material based photodetectors is reviewed. Particularly, the excellent performances such as broadband spectrum detection, ultrahigh photoresponsivity and sensitivity, fast response speed and high bandwidth, polarization-sensitive detection are pointed out on the basis of the state-of-the-art 2D photodetectors. Initial applications based on 2D material photodetectors are mentioned. Finally, an outlook is delivered, the challenges and future directions are discussed, and general advice for designing and realizing novel high-performance photodetectors is given to provide a guideline for the future development of this fast-developing field.

745 citations

Journal Article
TL;DR: In this paper, a few and single-layered BN nanoribbons, mostly terminated with zigzag edges, can be produced under unwrapping multi-walled Bn nanotubes through plasma etching.
Abstract: Inspired by rich physics and functionalities of graphenes, scientists have taken an intensive interest in two-dimensional (2D) crystals of h-BN (analogue of graphite, so-called "white" graphite). Recent calculations have predicted the exciting potentials of BN nanoribbons in spintronics due to tunable magnetic and electrical properties; however no experimental evidence has been provided since fabrication of such ribbons remains a challenge. Here, we show that few- and single-layered BN nanoribbons, mostly terminated with zigzag edges, can be produced under unwrapping multiwalled BN nanotubes through plasma etching. The interesting stepwise unwrapping and intermediate states were observed and analyzed. Opposed to insulating primal tubes, the nanoribbons become semiconducting due to doping-like conducting edge states and vacancy defects, as revealed by structural analyses and ab initio simulations. This study paves the way for BN nanoribbon production and usage as functional semiconductors with a wide range of applications in optoelectronics and spintronics.

577 citations

Journal Article
TL;DR: In this paper, the authors demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition.
Abstract: Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

439 citations

Journal ArticleDOI
TL;DR: This review not only provides a comprehensive summary on BP preparation and biomedical applications but also summarizes recent research and future possibilities.

414 citations

Journal ArticleDOI
TL;DR: The opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies, from the perspective of matrix and logic computing, are discussed.
Abstract: Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.

402 citations