scispace - formally typeset
Search or ask a question
Author

Lin Wang

Bio: Lin Wang is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Head and neck squamous-cell carcinoma & Cetuximab. The author has an hindex of 34, co-authored 59 publications receiving 5869 citations. Previous affiliations of Lin Wang include Sichuan University & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal ArticleDOI
26 Aug 2011-Science
TL;DR: In this article, the authors analyzed whole-exome sequencing data from 74 tumor-normal pairs and found that at least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis.
Abstract: Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.

2,245 citations

Journal ArticleDOI
TL;DR: Analysis of whole-exome sequencing data from 151 tumors revealed the phosphoinositide 3-kinase (PI3K) pathway to be the most frequently mutated oncogenic pathway, suggesting that PI3K pathway mutations may serve as predictive biomarkers for treatment selection.
Abstract: Genomic findings underscore the heterogeneity of head and neck squamous cell carcinoma (HNSCC). Identification of mutations that predict therapeutic response would be a major advance. We determined the mutationally altered, targetable mitogenic pathways in a large HNSCC cohort. Analysis of whole-exome sequencing data from 151 tumors revealed the phosphoinositide 3-kinase (PI3K) pathway to be the most frequently mutated oncogenic pathway (30.5%). PI3K pathway-mutated HNSCC tumors harbored a significantly higher rate of mutations in known cancer genes. In a subset of human papillomavirus-positive tumors, PIK3CA or PIK3R1 was the only mutated cancer gene. Strikingly, all tumors with concurrent mutation of multiple PI3K pathway genes were advanced (stage IV), implicating concerted PI3K pathway aberrations in HNSCC progression. Patient-derived tumorgrafts with canonical and noncanonical PIK3CA mutations were sensitive to an mTOR/PI3K inhibitor (BEZ-235), in contrast to PIK3CA-wild-type tumorgrafts. These results suggest that PI3K pathway mutations may serve as predictive biomarkers for treatment selection.

513 citations

Journal ArticleDOI
TL;DR: The data are consistent with the possibility that a limited number of markers in combination might identify >99% of epithelial ovarian cancers despite the heterogeneity of the disease.
Abstract: Purpose: Advanced-stage epithelial ovarian cancer has a poor prognosis with long-term survival in less than 30% of patients. When the disease is detected in stage I, more than 90% of patients can be cured by conventional therapy. Screening for early-stage disease with individual serum tumor markers, such as CA125, is limited by the fact that no single marker is up-regulated and shed in adequate amounts by all ovarian cancers. Consequently, use of multiple markers in combination might detect a larger fraction of early-stage ovarian cancers. Experimental Design: To identify potential candidates for novel markers, we have used Affymetrix human genome arrays (U95 series) to analyze differences in gene expression of 41,441 known genes and expressed sequence tags between five pools of normal ovarian surface epithelial cells (OSE) and 42 epithelial ovarian cancers of different stages, grades, and histotypes. Recursive descent partition analysis (RDPA) was performed with 102 probe sets representing 86 genes that were up-regulated at least 3-fold in epithelial ovarian cancers when compared with normal OSE. In addition, a panel of 11 genes known to encode potential tumor markers [mucin 1, transmembrane (MUC1), mucin 16 (CA125), mesothelin, WAP four-disulfide core domain 2 (HE4), kallikrein 6, kallikrein 10, matrix metalloproteinase 2, prostasin, osteopontin, tetranectin, and inhibin] were similarly analyzed. Results: The 3-fold up-regulated genes were examined and four genes [Notch homologue 3 (NOTCH3), E2F transcription factor 3 (E2F3), GTPase activating protein (RACGAP1), and hematological and neurological expressed 1 (HN1)] distinguished all tumor samples from normal OSE. The 3-fold up-regulated genes were analyzed using RDPA, and the combination of elevated claudin 3 (CLDN3) and elevated vascular endothelial growth factor (VEGF) distinguished the cancers from normal OSE. The 11 known markers were analyzed using RDPA, and a combination of HE4, CA125, and MUC1 expression could distinguish tumor from normal specimens. Expression at the mRNA level in the candidate markers was examined via semiquantitative reverse transcription-PCR and was found to correlate well with the array data. Immunohistochemistry was performed to identify expression of the genes at the protein level in 158 ovarian cancers of different histotypes. A combination of CLDN3, CA125, and MUC1 stained 157 (99.4%) of 158 cancers, and all of the tumors were detected with a combination of CLDN3, CA125, MUC1, and VEGF. Conclusions: Our data are consistent with the possibility that a limited number of markers in combination might identify >99% of epithelial ovarian cancers despite the heterogeneity of the disease.

449 citations

Journal ArticleDOI
TL;DR: At the level of tissue expression, each of 10 potential serum markers could be detected in 29-100% of ovarian cancers that had low or absent expression of CA125.

365 citations

Journal ArticleDOI
TL;DR: This is the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development and having therapeutic implications beyond STAT3 to other “undruggable” targets in human cancers.
Abstract: Despite evidence implicating transcription factors, including STAT3, in oncogenesis, these proteins have been regarded as “undruggable” We developed a decoy targeting STAT3 and conducted a phase 0 trial Expression levels of STAT3 target genes were decreased in head and neck cancers following injection with the STAT3 decoy compared with tumors receiving saline control Decoys have not been amenable to systemic administration due to instability To overcome this barrier, we linked the oligonucleotide strands using hexaethylene glycol spacers This cyclic STAT3 decoy bound with high affinity to STAT3 protein, reduced cellular viability, and suppressed STAT3 target gene expression in cancer cells Intravenous injection of the cyclic STAT3 decoy inhibited xenograft growth and downregulated STAT3 target genes in the tumors These results provide the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development Significance: This is the first study of a STAT3-selective inhibitor in humans and the first evidence that a transcription factor decoy can be modified to enable systemic delivery These findings have therapeutic implications beyond STAT3 to other “undruggable” targets in human cancers Cancer Discov; 2(8); 694–705 ©2012 AACR Read the Commentary on this article by Koppikar et al, [p 670][1] This article is highlighted in the In This Issue feature, [p 653][2] [1]: /lookup/volpage/2/670?iss=8 [2]: /lookup/volpage/2/653?iss=8

267 citations


Cited by
More filters
Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati1, Sam Behjati5, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg3, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk15, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog11, Stian Knappskog17, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson22, Andrea L. Richardson20, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi14, Jessica Zucman-Rossi15, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson20, Matthew Meyerson15, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister11, Stefan M. Pfister16, Peter J. Campbell29, Peter J. Campbell2, Peter J. Campbell30, Michael R. Stratton2, Michael R. Stratton31 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
Donna M. Muzny1, Matthew N. Bainbridge1, Kyle Chang1, Huyen Dinh1  +317 moreInstitutions (24)
19 Jul 2012-Nature
TL;DR: Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Abstract: To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase e (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.

6,883 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA with a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
Abstract: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

5,294 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations