scispace - formally typeset
Search or ask a question
Author

Lin Ye

Bio: Lin Ye is an academic researcher from University of Oxford. The author has contributed to research in topics: Catalysis & Powder diffraction. The author has an hindex of 20, co-authored 48 publications receiving 1280 citations. Previous affiliations of Lin Ye include East China University of Science and Technology & Fudan University.

Papers
More filters
Journal ArticleDOI
TL;DR: With a shape-dependent surface acidity, hydrothermal stability, and high photoactivity, these Nb(2)O(5) nanorods are a unique and exciting nanomaterial for non-classical photocatalytic mineralization of organic compounds in water.
Abstract: Nb(2)O(5) nanorods and nanospheres were synthesized, and their photocatalytic activity for methylene blue decomposition in water compared. Nb(2)O(5) nanorods clearly displayed higher activity, despite their comparable surface area. With a shape-dependent surface acidity, hydrothermal stability, and high photoactivity, these Nb(2)O(5) nanorods are a unique and exciting nanomaterial for non-classical photocatalytic mineralization of organic compounds in water.

184 citations

Journal ArticleDOI
TL;DR: In this article, a short review of synthetic methods for preparation of Nb2O5 nanostructures, their potential applications in catalysis and their structure-activity relationships is presented.
Abstract: Niobium pentoxide (Nb2O5) has long been known to catalyze unique acid induced reactions, redox reductions and photo-catalytic reactions, etc. Recently, there have been significant advancements in tailoring the oxide materials with controlled structures and morphologies using nano-chemical synthesis by the help of surfactant or stabilizer for optimal catalytic performance. In this short review, we will particularly highlight these synthetic methods for preparation of Nb2O5 nanostructures, their potential applications in catalysis and their structure-activity relationships.

161 citations

Journal ArticleDOI
TL;DR: In this article, the aqueous miscible organic solvent treated double hydroxide (LDH) nanosheets were synthesized following the AMO-LDH method and applied as catalyst precursors for methanol production from CO2 hydrogenation.
Abstract: Ultrathin (1–3 cationic-layers) (CuZn)1–xGax-CO3 layered double hydroxide (LDH) nanosheets were synthesized following the aqueous miscible organic solvent treatment (AMOST) method and applied as catalyst precursors for methanol production from CO2 hydrogenation. It is found that, upon reduction, the aqueous miscible organic solvent treated LDH (AMO-LDH) samples above a critical Ga3+ composition give consistently and significantly higher Cu surface areas and dispersions than the catalysts prepared from conventional hydroxyl-carbonate phases. Owing to the distinctive local steric and electrostatic stabilization of the ultrathin LDH structure, the newly formed active Cu(Zn) metal atoms can be stably embedded in the cationic layers, exerting an enhancement to the catalytic reaction. The best catalyst in this study displayed methanol productivity with a space-time yield of 0.6 gMeOH·gcat–1 h–1 under typical reaction conditions, which, as far as we are aware, is higher than most reported Cu-based catalysts in t...

100 citations

Journal ArticleDOI
TL;DR: Both experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites.
Abstract: We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite.

97 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the ceria promotion to Au catalysts affords enhanced activity and stability via formation of Au(0)/Au(I) as new active pairs.
Abstract: Replacement of Hg with non-toxic Au based catalysts for industrial hydrochlorination of acetylene to vinyl chloride is urgently required. However Au catalysts suffer from progressive deactivation caused by auto-reduction of Au(I) and Au(III) active sites and irreversible aggregation of Au(0) inactive sites. Here we show from synchrotron X-ray absorption, STEM imaging and DFT modelling that the availability of ceria(110) surface renders Au(0)/Au(I) as active pairs. Thus, Au(0) is directly involved in the catalysis. Owing to the strong mediating properties of Ce(IV)/Ce(III) with one electron complementary redox coupling reactions, the ceria promotion to Au catalysts gives enhanced activity and stability. Total pre-reduction of Au species to inactive Au nanoparticles of Au/CeO2&AC when placed in a C2H2/HCl stream can also rapidly rejuvenate. This is dramatically achieved by re-dispersing the Au particles to Au(0) atoms and oxidising to Au(I) entities, whereas Au/AC does not recover from the deactivation.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal Article
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using EPFL-206025 data set, which was created on 2015-03-03, modified on 2017-05-12
Abstract: Note: Times Cited: 875 Reference EPFL-ARTICLE-206025doi:10.1021/cr0501846View record in Web of Science URL: ://WOS:000249839900009 Record created on 2015-03-03, modified on 2017-05-12

1,704 citations

Journal ArticleDOI
TL;DR: This Review article is mainly focused on the most recent developments in smart design strategies for LDH materials and the potential catalytic applications of the resulting materials.
Abstract: This review surveys recent advances in the applications of layered double hydroxides (LDHs) in heterogeneous catalysis. By virtue of the flexible tunability and uniform distribution of metal cations in the brucite-like layers and the facile exchangeability of intercalated anions, LDHs-both as directly prepared or after thermal treatment and/or reduction-have found many applications as stable and recyclable heterogeneous catalysts or catalyst supports for a variety of reactions with high industrial and academic importance. A major challenge in this rapidly growing field is to simultaneously improve the activity, selectivity and stability of these LDH-based materials by developing ways of tailoring the electronic structure of the catalysts and supports. Therefore, this Review article is mainly focused on the most recent developments in smart design strategies for LDH materials and the potential catalytic applications of the resulting materials.

1,272 citations

Journal ArticleDOI
22 May 2019-Nature
TL;DR: A protocol for the electrochemical reduction of nitrogen to ammonia enables isotope-sensitive quantification of the ammonia produced and the identification and removal of contaminants, and should help to prevent false positives from appearing in the literature.
Abstract: The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative1–4 to the energy-intensive Haber–Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges5,6 facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation7–9 rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using 15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia. A protocol for the electrochemical reduction of nitrogen to ammonia enables isotope-sensitive quantification of the ammonia produced and the identification and removal of contaminants.

819 citations

Journal ArticleDOI
TL;DR: A robust way for tailoring the performance and interpreting the mechanism of heterojunction-based photocatalytic system for high-performance photocatalysis is provided, via in-situ wet chemistry with subsequent heat treatment.
Abstract: Constructing heterojunctions between two semiconductors with matched band structure is an effective strategy to acquire high-efficiency photocatalysts. The S-scheme heterojunction system has shown great potential in facilitating separation and transfer of photogenerated carriers, as well as acquiring strong photoredox ability. Herein, a 0D/2D S-Scheme heterojunction material involving CeO2 quantum dots and polymeric carbon nitride (CeO2 /PCN) is designed and constructed by in situ wet chemistry with subsequent heat treatment. This S-scheme heterojunction material shows high-efficiency photocatalytic sterilization rate (88.1 %) towards Staphylococcus aureus (S. aureus) under visible-light irradiation (λ≥420 nm), which is 2.7 and 8.2 times that of pure CeO2 (32.2 %) and PCN (10.7 %), respectively. Strong evidence of S-scheme charge transfer path is verified by theoretical calculations, in situ irradiated X-ray photoelectron spectroscopy, and electron paramagnetic resonance.

736 citations