Author
Linda G. Shapiro
Other affiliations: Oregon State University, Facebook, Isfahan University of Medical Sciences ...read more
Bio: Linda G. Shapiro is an academic researcher from University of Washington. The author has contributed to research in topics: Object (computer science) & Image segmentation. The author has an hindex of 50, co-authored 304 publications receiving 15536 citations. Previous affiliations of Linda G. Shapiro include Oregon State University & Facebook.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
01 Sep 1991
TL;DR: This two-volume set is an authoritative, comprehensive, modern work on computer vision that covers all of the different areas of vision with a balanced and unified approach.
Abstract: From the Publisher:
This two-volume set is an authoritative, comprehensive, modern work on computer vision that covers all of the different areas of vision with a balanced and unified approach. The discussion in "Volume I" focuses on image in, and image out or feature set out. "Volume II" covers the higher level techniques of illumination, perspective projection, analytical photogrammetry, motion, image matching, consistent labeling, model matching, and knowledge-based vision systems.
3,571 citations
[...]
01 Sep 1984-Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing
TL;DR: There are several image segmentation techniques, some considered general purpose and some designed for specific classes of images as discussed by the authors, some of which can be classified as: measurement space guided spatial clustering, single linkage region growing schemes, hybrid link growing scheme, centroid region growing scheme and split-and-merge scheme.
Abstract: There are now a wide Abstract There are now a wide variety of image segmentation techniques, some considered general purpose and some designed for specific classes of images. These techniques can be classified as: measurement space guided spatial clustering, single linkage region growing schemes, hybrid linkage region growing schemes, centroid linkage region growing schemes, spatial clustering schemes, and split-and-merge schemes. In this paper, we define each of the major classes of image segmentation techniques and describe several specific examples of each class of algorithm. We illustrate some of the techniques with examples of segmentations performed on real images.
1,917 citations
[...]
05 Apr 1985
TL;DR: Each of the major classes of image segmentation techniques is defined and several specific examples of each class of algorithm are described, illustrated with examples of segmentations performed on real images.
Abstract: There are now a wide variety of image segmentation techniques, some considered general purpose and some designed for specific classes of images. These techniques can be classified as: measurement space guided spatial clustering, single linkage region growing schemes, hybrid linkage region growing schemes, centroid linkage region growing schemes, spatial clustering schemes, and split-and-merge schemes. In this paper, we define each of the major classes of image segmentation techniques and describe several specific examples of each class of algorithm. We illustrate some of the techniques with examples of segmentations performed on real images.
1,021 citations
[...]
TL;DR: The structural description of an object and the concepts of exact and inexact matching of two structural descriptions are formally defined and the formula for the expected number of nodes in the tree for backtracking alone and with a forward checking algorithm is developed.
Abstract: In this paper we formally define the structural description of an object and the concepts of exact and inexact matching of two structural descriptions We discuss the problems associated with a brute-force backtracking tree search for inexact matching and develop several different algorithms to make the tree search more efficient We develop the formula for the expected number of nodes in the tree for backtracking alone and with a forward checking algorithm Finally, we present experimental results showing that forward checking is the most efficient of the algorithms tested
622 citations
[...]
TL;DR: ESPapernot et al. as discussed by the authors introduced a fast and efficient convolutional neural network, ESPNet, for semantic segmentation of high resolution images under resource constraints, which is efficient in terms of computation, memory, and power.
Abstract: We introduce a fast and efficient convolutional neural network, ESPNet, for semantic segmentation of high resolution images under resource constraints. ESPNet is based on a new convolutional module, efficient spatial pyramid (ESP), which is efficient in terms of computation, memory, and power. ESPNet is 22 times faster (on a standard GPU) and 180 times smaller than the state-of-the-art semantic segmentation network PSPNet, while its category-wise accuracy is only 8% less. We evaluated ESPNet on a variety of semantic segmentation datasets including Cityscapes, PASCAL VOC, and a breast biopsy whole slide image dataset. Under the same constraints on memory and computation, ESPNet outperforms all the current efficient CNN networks such as MobileNet, ShuffleNet, and ENet on both standard metrics and our newly introduced performance metrics that measure efficiency on edge devices. Our network can process high resolution images at a rate of 112 and 9 frames per second on a standard GPU and edge device, respectively. Our code is open-source and available at https://sacmehta.github.io/ESPNet/.
393 citations
Cited by
More filters
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
12,323 citations
[...]
TL;DR: This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently.
Abstract: This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently For classification a method based on Kullback discrimination of sample and prototype distributions is used The classification results for single features with one-dimensional feature value distributions and for pairs of complementary features with two-dimensional distributions are presented
6,650 citations
[...]
TL;DR: This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied, and establishing a framework for understanding the merits and relationships between the wide variety of existing techniques.
Abstract: Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, monitoring global land usage using satellite images, matching stereo images to recover shape for autonomous navigation, and aligning images from different medical modalities for diagnosis.Over the years, a broad range of techniques has been developed for various types of data and problems. These techniques have been independently studied for several different applications, resulting in a large body of research. This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied. Three major types of variations are distinguished. The first type are the variations due to the differences in acquisition which cause the images to be misaligned. To register images, a spatial transformation is found which will remove these variations. The class of transformations which must be searched to find the optimal transformation is determined by knowledge about the variations of this type. The transformation class in turn influences the general technique that should be taken. The second type of variations are those which are also due to differences in acquisition, but cannot be modeled easily such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be spatial, such as perspective distortions. The third type of variations are differences in the images that are of interest such as object movements, growths, or other scene changes. Variations of the second and third type are not directly removed by registration, but they make registration more difficult since an exact match is no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge about the characteristics of each type of variation effect the choice of feature space, similarity measure, search space, and search strategy which will make up the final technique. All registration techniques can be viewed as different combinations of these choices. This framework is useful for understanding the merits and relationships between the wide variety of existing techniques and for assisting in the selection of the most suitable technique for a specific problem.
4,769 citations
[...]
TL;DR: A fast and flexible algorithm for computing watersheds in digital gray-scale images is introduced, based on an immersion process analogy, which is reported to be faster than any other watershed algorithm.
Abstract: A fast and flexible algorithm for computing watersheds in digital gray-scale images is introduced. A review of watersheds and related motion is first presented, and the major methods to determine watersheds are discussed. The algorithm is based on an immersion process analogy, in which the flooding of the water in the picture is efficiently simulated using of queue of pixel. It is described in detail provided in a pseudo C language. The accuracy of this algorithm is proven to be superior to that of the existing implementations, and it is shown that its adaptation to any kind of digital grid and its generalization to n-dimensional images (and even to graphs) are straightforward. The algorithm is reported to be faster than any other watershed algorithm. Applications of this algorithm with regard to picture segmentation are presented for magnetic resonance (MR) imagery and for digital elevation models. An example of 3-D watershed is also provided. >
4,698 citations
[...]
TL;DR: It is shown that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time.
Abstract: Where feature points are used in real-time frame-rate applications, a high-speed feature detector is necessary. Feature detectors such as SIFT (DoG), Harris and SUSAN are good methods which yield high quality features, however they are too computationally intensive for use in real-time applications of any complexity. Here we show that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time. By comparison neither the Harris detector (120%) nor the detection stage of SIFT (300%) can operate at full frame rate.
Clearly a high-speed detector is of limited use if the features produced are unsuitable for downstream processing. In particular, the same scene viewed from two different positions should yield features which correspond to the same real-world 3D locations [1]. Hence the second contribution of this paper is a comparison corner detectors based on this criterion applied to 3D scenes. This comparison supports a number of claims made elsewhere concerning existing corner detectors. Further, contrary to our initial expectations, we show that despite being principally constructed for speed, our detector significantly outperforms existing feature detectors according to this criterion.
3,828 citations