scispace - formally typeset
Search or ask a question
Author

Linda Kaufman

Bio: Linda Kaufman is an academic researcher from Bell Labs. The author has contributed to research in topics: Eigenvalues and eigenvectors & Matrix (mathematics). The author has an hindex of 23, co-authored 49 publications receiving 6869 citations. Previous affiliations of Linda Kaufman include AT&T & University of Colorado Boulder.

Papers
More filters
Proceedings Article
03 Dec 1996
TL;DR: This work compares support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space and expects that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.
Abstract: A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.

4,009 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model tailored to the physics of positron emissions is presented, and the model is used to describe the image reconstruction problem of PET as a standard problem in statistical estimation from incomplete data.
Abstract: Positron emission tomography (PET)—still in its research stages—is a technique that promises to open new medical frontiers by enabling physicians to study the metabolic activity of the body in a pictorial manner. Much as in X-ray transmission tomography and other modes of computerized tomography, the quality of the reconstructed image in PET is very sensitive to the mathematical algorithm to be used for reconstruction. In this article, we tailor a mathematical model to the physics of positron emissions, and we use the model to describe the basic image reconstruction problem of PET as a standard problem in statistical estimation from incomplete data. We describe various estimation procedures, such as the maximum likelihood (ML) method (using the EM algorithm), the method of moments, and the least squares method. A computer simulation of a PET experiment is then used to demonstrate the ML and the least squares reconstructions. The main purposes of this article are to report on what we believe is an...

804 citations

Journal Article
TL;DR: In this paper, the authors present a list of the companies that have contributed to the development of the Numerical Algorithms Group (NALG), including Intel, Sandia National Laboratories, and IBM.
Abstract: L. SUSAN BLACKFORD Myricom, Inc. JAMES DEMMEL University of California, Berkeley JACK DONGARRA The University of Tennessee IAIN DUFF Rutherford Appleton Laboratory and CERFACS SVEN HAMMARLING Numerical Algorithms Group, Ltd. GREG HENRY Intel Corporation MICHAEL HEROUX Sandia National Laboratories LINDA KAUFMAN William Patterson University ANDREW LUMSDAINE Indiana University ANTOINE PETITET Sun Microsystems ROLDAN POZO National Institute of Standards and Technology KARIN REMINGTON The Center for Advancement of Genomics and R. CLINT WHALEY Florida State University

595 citations

Journal ArticleDOI
TL;DR: Several decompositions of symmetry matrices for calculating inertia and solving systems of linear equations are discussed and new partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.
Abstract: Several decompositions ofsymmetric matrices for calculating inertia and solving systems of linear equations are discussed. New partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.

368 citations

Journal ArticleDOI
Linda Kaufman1
TL;DR: The data structures one might use and ways of taking advantage of the geometry of the physical system are discussed and the numerical aspects of the EM (expectation maximization) algorithm are treated.
Abstract: Since the publication of Shepp and Vadi's [ 14] maximum likelihood reconstruction algorithm for emission tomography (ET), many medical research centers engaged in ET have made an effort to change their reconstruction algorithms to this new approach. Some have succeeded, while others claim they could not adopt this new approach primarily because of limited computing power. In this paper, we discuss techniques for reducing the computational requirements of the reconstruction algorithm. Specifically, the paper discusses the data structures one might use and ways of taking advantage of the geometry of the physical system. The paper also treats some of the numerical aspects of the EM (expectation maximization) algorithm, and ways of speeding up the numerical algorithm using some of the traditional techniques of numerical analysis.

312 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
01 Nov 2008
TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Abstract: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

17,420 citations

Journal ArticleDOI
TL;DR: There are several arguments which support the observed high accuracy of SVMs, which are reviewed and numerous examples and proofs of most of the key theorems are given.
Abstract: The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

15,696 citations

Journal ArticleDOI
TL;DR: This tutorial gives an overview of the basic ideas underlying Support Vector (SV) machines for function estimation, and includes a summary of currently used algorithms for training SV machines, covering both the quadratic programming part and advanced methods for dealing with large datasets.
Abstract: In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.

10,696 citations

Journal ArticleDOI
TL;DR: CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types when applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors.
Abstract: We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersortstanfordedu/)

6,967 citations