scispace - formally typeset
Search or ask a question
Author

Linda Landlová

Bio: Linda Landlová is an academic researcher from Masaryk University. The author has contributed to research in topics: Particulates & Aerosol. The author has an hindex of 9, co-authored 10 publications receiving 355 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Estimated wet and dry deposition of four representative FRs using size-segregated aerosol data resulted in lower deposition estimates than when bulk aerosols data were used, which suggests that without size-specific distributions, these parameters could be underestimated for FRs.
Abstract: This study investigates the distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and a group of novel flame retardants (NFRs) on atmospheric aerosols. Two high volume cascade impactors were used to collect particulate fractions of ambient air over a one year period at urban and rural sites. The majority of FRs were found on the finest aerosols (<0.95 μm). Concentrations of HBCD were higher than those of ΣPBDEs. Moreover, we noted seasonality and spatial differences in particle size distributions, yet a large portion of the observed differences were due to differences in particulate matter (PM) itself. When normalized by PM, the size distributions of the FRs exhibited much greater heterogeneity. Differences existed between the FR distributions by molecular weight, with the higher molecular weight FRs (e.g., BDE-209, Dechlorane Plus) distributed more uniformly across all particulate size fractions. The seasonal, spatial, and compound-specific differences are of crucial importance when estimating dry and wet deposition of FRs as smaller aerosols have longer atmospheric residence times. Estimated wet and dry deposition of four representative FRs (BDE-47, BDE-209, HBCD, and Dechlorane Plus) using size-segregated aerosol data resulted in lower deposition estimates than when bulk aerosol data were used. This has implications for estimates of long-range atmospheric transport and atmospheric residence times, as it suggests that without size-specific distributions, these parameters could be underestimated for FRs.

69 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air is presented.
Abstract: . This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

61 citations

Journal ArticleDOI
TL;DR: In this article, the seasonal size distribution of particulate polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorined biphenyls (dl-PCBs) in the atmosphere was presented.

60 citations

Journal ArticleDOI
TL;DR: The concentration of 15 3-6-ring polycyclic aromatic hydrocarbons (PAHs) in atmospheric precipitation was monitored over 18 months in the years 2006-2008, using an automatic wet-only sampler at a suburban site in Brno, Czech Republic.

54 citations

Journal ArticleDOI
TL;DR: In this article, a high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size-specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current understanding of vapour-particle partitioning of PAHs and the PAH deposition processes is reviewed, and in greater detail, their chemical reactions are reviewed.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their well-recognised toxicity and especially due to the carcinogenic hazard which they present. PAHs are semi-volatile and therefore partition between vapour and condensed phases in the atmosphere and both the vapour and particulate forms undergo chemical reactions. This article briefly reviews the current understanding of vapour-particle partitioning of PAHs and the PAH deposition processes, and in greater detail, their chemical reactions. PAHs are reactive towards a number of atmospheric oxidants, most notably the hydroxyl radical, ozone, the nitrate radical (NO3) and nitrogen dioxide. Rate coefficient data are reviewed for reactions of lower molecular weight PAH vapour with these species as well as for heterogeneous reactions of higher molecular weight compounds. Whereas the data for reactions of the 2-3-ring PAH vapour are quite extensive and generally consistent, such data are mostly lacking for the 4-ring PAHs and the heterogeneous rate data (5 and more rings), which are dependent on the substrate type and reaction conditions, are less comprehensive. The atmospheric reactions of PAH lead to the formation of oxy and nitro derivatives, reviewed here, too. Finally, the capacity of PAHs for long range transport and the results of numerical model studies are described. Research needs are identified.

511 citations

Journal ArticleDOI
TL;DR: The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Abstract: Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.

344 citations

Journal ArticleDOI
TL;DR: In this article, the X-ray diffraction (XRD) patterns of the fibres showed a skewed amorphous halo, whereas the differential scanning calorimetry (DSC) results revealed an apparent crystallinity of 6-8% for the 0.4 and 1-μm fibres and 0.2% crystallinity for the 4.3-mm fibres.
Abstract: Tough fibrous membranes for smoke filtration have been developed from recycled polyethylene terephthalate (PET) bottles by solution electrospinning. The fibre thicknesses were controlled from 0.4 to 4.3 μm by adjustment of the spinning conditions. The highest fibre strength and toughness were obtained for fibres with an average diameter of 1.0 μm, 62.5 MPa and 65.8 MJ m−3, respectively. The X-ray diffraction (XRD) patterns of the fibres showed a skewed amorphous halo, whereas the differential scanning calorimetry (DSC) results revealed an apparent crystallinity of 6–8% for the 0.4 and 1 μm fibres and 0.2% crystallinity for the 4.3 μm fibres. Heat shrinkage experiments were conducted by exposing the fibres to a temperature above their glass transition temperature (Tg). The test revealed a remarkable capability of the thinnest fibres to shrink by 50%, which was in contrast to the 4.3 μm fibres, which displayed only 4% shrinkage. These thinner fibres also showed a significantly higher glass transition temperature (+15 °C) than that of the 4.3 μm fibres. The results suggested an internal morphology with a high degree of molecular orientation in the amorphous segments along the thinner fibres, consistent with a constrained mesomorphic phase formed during their rapid solidification in the electric field. Air filtration was demonstrated with cigarette smoke as a model substance passed through the fibre mats. The 0.4 μm fibres showed the most effective smoke filtration and a capacity to absorb 43× its own weight in smoke residuals, whereas the 1 μm fibres showed the best combination of filtration capacity (32×) and mechanical robustness. The use of recycled PET in the form of nanofibres is a novel way of turning waste into higher-value products.

153 citations

Journal ArticleDOI
TL;DR: Episode with the most negative impact on human health (the highest lifetime cancer risk concentrations), were produced by a higher contribution of stationary and vehicular emissions in winter season favoured by high relative humidity, low temperature and low wind speed.

138 citations