scispace - formally typeset
Search or ask a question
Author

Linda M. Bartoshuk

Other affiliations: Yale University
Bio: Linda M. Bartoshuk is an academic researcher from University of Florida. The author has contributed to research in topics: Taste & Supertaster. The author has an hindex of 57, co-authored 137 publications receiving 10787 citations. Previous affiliations of Linda M. Bartoshuk include Yale University.
Topics: Taste, Supertaster, Sweetness, TAS2R38, Olfaction


Papers
More filters
Journal ArticleDOI
TL;DR: In the laboratory, scaling of PROP bitterness led to the identification of a subset of tasters (supertasters) who rate PROP as intensely bitter, and anatomical data support the sex difference; women have more fungiform papillae and more taste buds.

751 citations

Journal ArticleDOI
TL;DR: This work generalized an existing scale, the Labeled Magnitude Scale (LMS), by placing the label "strongest imaginable sensation of any kind" at the top, and produced similar results suggesting that the gLMS is valid for taste comparisons across nontasters, medium tasters, and supertasters.

474 citations

Journal ArticleDOI
TL;DR: Modern psychophysics has traveled considerably beyond the threshold measures that dominated sensory studies in the first half of this century and promise to provide increasingly accurate comparisons of perceived intensities across individuals.
Abstract: Modern psychophysics has traveled considerably beyond the threshold measures that dominated sensory studies in the first half of this century. Current methods capture the range of perceived intensity from threshold to maximum and promise to provide increasingly accurate comparisons of perceived intensities across individuals. The application of new psychophysical tools to genetic variation in taste allowed us to discover supertasters, individuals who live in particularly intense taste worlds. Because of the anatomy of the taste system, supertasters feel more burn from oral irritants like chili peppers, more creaminess/ viscosity from fats and thickeners in food and may also experience more intense oral pain. Not surprisingly, these sensory differences influence food choices and thus health. A discussion of the milestones on the road to understanding genetic variation in taste must include discussion of some potholes as well. Often our failures have been as instructive as our successes in the effort to evaluate the impact of genetic variation in taste.

412 citations

Journal ArticleDOI
TL;DR: Bitterness and sweetness of sampled vegetables varied by taste genetic and taste function markers, which explained differences in preference for vegetables tasted in the laboratory as well as overall vegetable intake outside the laboratory.

369 citations

Journal ArticleDOI
TL;DR: These results support taste genetic effects on alcohol intake, and PROP bitterness serves as a marker of these effects.
Abstract: STRONG SUPPORT EXISTS for a familial component in the etiology of alcoholism and alcohol use [see Dick and Foroud (2003) for review]. Twin studies show that the heritability of alcoholism ranges from 50 to 60% (Heath et al., 1997) and that genetic influences can explain a 5-fold difference in alcohol use among adolescents in alcohol-predisposing environments (Dick et al., 2001). Genetic risk for alcoholism is complex; several different genes undoubtedly exert effects on the rewarding influence of drinking alcohol, on the metabolic tolerance of alcohol overconsumption, on brain systems that respond to reward, and on response to alcohol withdrawal (Crabbe, 2002). Specific gene mechanisms have been linked to, for example, the metabolism of alcohol via alcohol dehydrogenase (Mulligan et al., 2003; Osier et al., 1999) and aldehyde dehydrogenase (Oota et al., 2004), as well as dependence via γ-aminobutyric acid receptors (Song et al., 2003). The purpose of this study was to examine the association between genetic variation in taste and alcohol use in a group of reportedly healthy young adults. Genetic variation in taste influences the sensations from alcoholic beverages and could be one of the genetic factors that interacts with environmental factors to determine the risk of alcohol overconsumption, as suggested by models of gene-environment interaction (Heath and Nelson, 2002). The ability to taste the bitterness of phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP), which share an group, is a well documented phenotypic polymorphism. The distribution of thresholds for PTC or PROP tasting is bimodal: “nontasters” have increased thresholds (low sensitivity), and “tasters” have lower thresholds (higher sensitivity). Family studies have generally supported the model that tasting was a dominant trait and nontasting a recessive trait (Blakeslee, 1932; Snyder, 1931). An important gene contributing to PTC perception has been identified (Kim et al., 2003). The gene (TAS2R38), located on chromosome 7q36, is a member of the bitter taste receptor family. There are two common molecular forms [proline-alanine-valine (PAV) and alanine-valine-isoleucine (AVI)] of this receptor defined by three nucleotide polymorphisms that result in three amino acid substitutions: Pro49Ala, Ala262Val, and Val296Ile. The ancestral human haplotype at these three amino acids—determined by sequencing DNA from several other ape species, an old world monkey, and a new world monkey—is PAV (Kim et al., 2003; Wooding et al., 2004). This molecular form is common in humans and is associated with tasting; the other common form, the triply derived molecular form, AVI, is associated with nontasting. Three other haplotypes have been observed: AAV, AAI, and PVI. The original report (Kim et al., 2003) studied 200 Europeans and 118 individuals from other regions. Historically, researchers have used detection thresholds to classify individuals as nontasters or tasters of these bitter compounds (e.g., Fox, 1931; Harris and Kalmus, 1949). Fischer and Griffin (1964) replaced PTC with its chemical relative PROP, which lacks the sulfurous odor of PTC and may be less toxic (Barnicot et al., 1951; Lawless, 1980). Insensitivity to PTC or PROP is estimated at 30% in European populations, although the percentages vary with sex and among ethnic groups globally (Bartoshuk et al., 1994; Guo and Reed, 2001). The taster group shows significant variability in the perceived bitterness of PROP. Although threshold measures may be used to separate individuals with low thresholds (tasters) from individuals with increased thresholds (nontasters), subsequent work by Bartoshuk et al. (1994) identified two distinct populations within the taster group. By comparing the perceived intensity of concentrated PROP, the taster group is subdivided into those who taste concentrated PROP (3.2 mM) as “strongly” bitter (medium tasters) and those who taste PROP as greater than “very strongly” bitter (supertasters) (Bartoshuk et al., 1994). Supertasters cannot be identified via thresholds, because the distributions between those who are sensitive and extremely sensitive to PROP overlap (Reed et al., 1995). Supertasters differ from medium tasters and nontasters in the number of taste papillae on the anterior tongue (fungiform papilla); PROP supertasters have, on average, the most fungiform papillae and taste buds as assessed with videomicroscopy (Bartoshuk et al., 1994). A positive relationship between PROP bitterness and fungiform papillae number is also observed by using lower magnification for papillae counting (Delwiche et al., 2001; Tepper and Nurse, 1997). Supertasting may result from an anatomical difference related to the density of fungiform papillae on the tongue, as well as an allelic variation of TAS2R38 that results in the presence or absence of a functional receptor, as proposed by Bartoshuk et al. (2001) and as supported by data shown in this article. The genetic control of fungiform papilla density is unknown. The perceived bitterness of PROP is correlated with unpleasant and pleasant sensations from alcohol. Those who taste PROP as more bitter also report ethanol (Bartoshuk et al., 1993; Duffy et al., 2004; Prescott and Swain-Campbell, 2000), some types of beer (Intranuovo and Powers, 1998), scotch (Lanier et al., 2004), and red wines (Pickering et al., 2004) as more bitter or irritating. Nontasters not only perceive scotch as less bitter but also as more sweet than do supertasters (Lanier et al., 2005). The density of fungiform papillae can explain some of the oral sensory differences associated with PROP tasting, as first suggested by Miller and Reedy (1990). The taste buds are surrounded by fibers of the trigeminal nerve (cranial nerve V), which are believed to mediate oral burn (Finger et al., 1994; Whitehead et al., 1985; Whitehead and Kachele, 1994). It is interesting to note that sucrose and ethanol stimulate similar central brain centers in rats (Lemon et al., 2004) and that ethanol stimulates taste nerve fibers responsive to sucrose in primates (Hellekant et al., 1997). Supertasters may have an inherent sensory aversion to consuming alcoholic beverages with high levels of ethanol and a pronounced alcohol flavor. Young adults who taste PROP as more bitter have been found to consume less beer (Guinard et al., 1996), including during their first year of drinking (Intranuovo and Powers, 1998). In young adults who were not college undergraduates, we found that PROP supertasters reported consuming alcoholic beverages less frequently than did nontasters (Duffy et al., 2004), a finding that was also seen in preliminary data in adults (primarily men) recruited through an industrial worksite wellness program (Hutchins et al., 2002). Not all studies, however, find associations between PROP bitterness and alcohol intake (e.g., Mattes and DiMeglio, 2001). The literature is inconsistent with respect to a relationship between PROP tasting and risk of alcoholism. In studies with alcoholics compared with controls, some report an excess of nontasters among alcoholics (DiCarlo and Powers, 1998; Peeples, 1962; Spiegel, 1972), whereas other studies do not (Reid et al., 1968; Smith, 1972; Swinson, 1973). In studies examining family history of alcoholism, Pelchat and Danowski (1992) found significantly more PROP nontasters among children of alcoholics than among children of nonalcoholics, whether or not the children themselves were alcoholic. Kranzler and colleagues, however, were unable to show a significant relationship between PROP threshold and parental history of alcohol dependence in nonalcoholic young adults (Kranzler et al., 1998) or in those with alcohol dependency (Kranzler et al., 1996). One study found comorbidity between depression and alcoholism in college students who reported PROP as very bitter (DiCarlo and Powers, 1998). Some of the inconsistencies in PROP effects on alcohol consumption behaviors could relate to the measurement of PROP tasting. A number of studies relating alcohol-ingestive behaviors to PROP have relied on a threshold procedure (Kranzler et al., 1996, 1998; Peeples, 1962; Pelchat and Danowski, 1992; Spiegel, 1972), which, because it cannot identify supertasters (Bartoshuk et al., 1994), has the potential to fail to find PROP effects. In fact, we reported positive and significant associations between the frequency of consuming alcoholic beverages and PROP bitterness, but not PROP threshold (Duffy et al., 2004). Distinguishing PROP supertasters from medium tasters and nontasters requires valid scaling methods, as reviewed previously (Bartoshuk et al., 2002b, 2004a,Bartoshuk et al., b). Discovery of allelic variation in TAS2R38, the gene for the PTC receptor, presented the opportunity for examining its ability to predict the oral sensation from an ethanol probe and the frequency of consuming alcoholic beverages in a sample of healthy adults who were recruited into a study of taste genetics and dietary behaviors and who reported consuming alcoholic beverages. Analysis of these data showed that genotype predicts PROP bitterness and, because of its association with PROP bitterness, predicts alcohol intake. However, genotype fully accounts neither for supertasting nor for some of the oral sensations from alcohol.

338 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that binge eating is motivated by a desire to escape from self-awareness, and the escape model is capable of integrating much of the available evidence about binge eating.
Abstract: This article proposes that binge eating is motivated by a desire to escape from self-awareness. Binge eaters suffer from high standards and expectations, especially an acute sensitivity to the difficult (perceived) demands of others. When they fall short of these standards, they develop an aversive pattern of high self-awareness, characterized by unflattering views of self and concern over how they are perceived by others. These aversive self-perceptions are accompanied by emotional distress, which often includes anxiety and depression. To escape from this unpleasant state, binge eaters attempt the cognitive response of narrowing attention to the immediate stimulus environment and avoiding broadly meaningful thought. This narrowing of attention disengages normal inhibitions against eating and fosters an uncritical acceptance of irrational beliefs and thoughts. The escape model is capable of integrating much of the available evidence about binge eating.

2,095 citations

Journal ArticleDOI
TL;DR: Whether genetic predispositions are manifested in food preferences that foster healthy diets depends on the eating environment, including food availability and child-feeding practices of the adults.
Abstract: Using a developmental systems perspective, this review focuses on how genetic predispositions interact with aspects of the eating environment to produce phenotypic food preferences. Predispositions include the unlearned, reflexive reactions to basic tastes: the preference for sweet and salty tastes, and the rejection of sour and bitter tastes. Other predispositions are ( a) the neophobic reaction to new foods and (b) the ability to learn food preferences based on associations with the contexts and consequences of eating various foods. Whether genetic predispositions are manifested in food preferences that foster healthy diets depends on the eating environment, including food availability and child-feeding practices of the adults. Unfortunately, in the United States today, the ready availability of energy-dense foods, high in sugar, fat, and salt, provides an eating environment that fosters food preferences inconsistent with dietary guidelines, which can promote excess weight gain and obesity.

1,664 citations

Journal ArticleDOI
TL;DR: This manuscript focuses on the NCCN Guidelines Panel recommendations for the workup, primary treatment, risk reduction strategies, and surveillance specific to DCIS.
Abstract: Ductal carcinoma in situ (DCIS) of the breast represents a heterogeneous group of neoplastic lesions in the breast ducts. The goal for management of DCIS is to prevent the development of invasive breast cancer. This manuscript focuses on the NCCN Guidelines Panel recommendations for the workup, primary treatment, risk reduction strategies, and surveillance specific to DCIS.

1,545 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: The emerging picture of taste coding at the periphery is one of elegant simplicity, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes.
Abstract: The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.

1,330 citations

Journal ArticleDOI
17 Mar 2000-Cell
TL;DR: A heterologous expression system is used to show that specific T2Rs function as bitter taste receptors, and these findings provide a plausible explanation for the uniform bitter taste that is evoked by many structurally unrelated toxic compounds.

1,304 citations