scispace - formally typeset
Search or ask a question
Author

Linda S. Heath

Bio: Linda S. Heath is an academic researcher from United States Forest Service. The author has contributed to research in topics: Carbon sequestration & Forest inventory. The author has an hindex of 44, co-authored 134 publications receiving 9412 citations. Previous affiliations of Linda S. Heath include Ontario Forest Research Institute & Global Environment Facility.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set of consistent, national-scale aboveground biomass regression equations for U.S. species were developed for predicting biomass of tree components, defined in dry weight terms, for trees in the United States.
Abstract: Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total aboveground and component biomass, defined in dry weight terms, for trees in the United States. We then implemented a modified meta-analysis based on the published equations to develop a set of consistent, national-scale aboveground biomass regression equations for U.S. species. Equations for predicting biomass of tree components were developed as proportions of total aboveground biomass for hardwood and softwood groups. A comparison with recent equations used to develop large-scale biomass estimates from U.S. forest inventory data for eastern U.S. species suggests general agreement (±30%) between biomass estimates. The comparison also shows that differences in equation forms and species groupings may cause differences at small scales depending on tree size and forest species composition. This analysis represents the first major effort to compile and analyze all available biomass literature in a consistent national-scale framework. The equations developed here are used to compute the biomass estimates used by the model FORCARB to develop the U.S. C budget. FOR. SCI. 49(1):12-35.

1,276 citations

Journal ArticleDOI
TL;DR: In this paper, the authors brought together forest sector C budgets for Canada, United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models.
Abstract: There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together forest sector C budgets for Canada, the United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models. Together, these suggest that northern forests and woodlands provided a total sink for 0.6–0.7 Pg of C per year (1 Pg = 1015 g) during the early 1990s, consisting of 0.21 Pg C/yr in living biomass, 0.08 Pg C/yr in forest products, 0.15 Pg C/yr in dead wood, and 0.13 Pg C/yr in the forest floor and soil organic matter. Estimates of changes in soil C pools have improved but remain the least certain terms of the budgets. Over 80% of the estimated sink occurred in one-third of the forest area, in temperate regions affected by fire suppression, agricultural abandonment, and plantation forestry. Growth in boreal regions was offset by fire and other disturbances that vary considerably from year to year. Comparison with atmospheric inversions suggests significant land C sinks may occur outside the forest sector.

864 citations

Journal ArticleDOI
22 Jun 2001-Science
TL;DR: Land- and atmosphere-based estimates of the carbon sink in the coterminous United States for 1980–89 are consistent, within the large ranges of uncertainty for both methods, indicating a relatively stable U.S. sink throughout the period.
Abstract: For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.

804 citations

ReportDOI
01 Jan 2004
TL;DR: A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America is presented.
Abstract: A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation, along with examples of how to use the database. The CD-ROM included with the paper version of this publication contains the complete database (Table 3) in spreadsheet format (Microsoft Excel 2002� with Windows XP�). The database files can also be viewed in both spreadsheet and pdf formats by directing your browser to the Global Change page at http://www.fs.fed.us/ne/global/pubs/books/index.html

478 citations

Journal ArticleDOI
TL;DR: It is found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many Strategies have co-benefits such as biodiversity, water, and economic opportunities.
Abstract: Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because ;60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as

398 citations


Cited by
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
18 Aug 2006-Science
TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Abstract: Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

4,701 citations

Journal ArticleDOI
TL;DR: In this paper, the role of inland water ecosystems in the global carbon cycle has been investigated and it is shown that roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea, roughly equally as inorganic and organic carbon.
Abstract: Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

3,179 citations