scispace - formally typeset
Search or ask a question
Author

Linda Spentzouris

Bio: Linda Spentzouris is an academic researcher from Illinois Institute of Technology. The author has contributed to research in topics: Metamaterial & Photocathode. The author has an hindex of 12, co-authored 63 publications receiving 495 citations. Previous affiliations of Linda Spentzouris include United States Department of Energy & Fermilab.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has made a direct determination of the diffusion rates in a stored, coasting antiproton beam by observing the decay rates associated with beam echoes in the longitudinal plane.
Abstract: We have made a direct determination of the diffusion rates in a stored, coasting antiproton beam by observing the decay rates associated with beam echoes in the longitudinal plane. The beam echoes, similar to those observed in other fields of physics, are generated by a sequential impulse excitation at harmonics of the beam revolution frequency. The echo envelope follows a characteristic response which, however, can be modified by the presence of even a very weak scattering process, permitting a sensitive determination of the longitudinal diffusion rate in the beam. {copyright} {ital 1996 The American Physical Society.}

54 citations

Journal ArticleDOI
TL;DR: In this paper, a beamline experiment was performed with the metamaterial-loaded waveguide, where a 6 MeV electron beam passes through the waveguide and generates a wakefield via the Cherenkov radiation mechanism.
Abstract: We report on a design of a TM-mode based metamaterial-loaded waveguide. Network analyzer measurements demonstrated a left-handed propagation region for the TM11 mode at around 10 GHz. A beamline experiment was performed with the metamaterial-loaded waveguide. In this experiment, a 6 MeV electron beam passes through the waveguide and generates a wakefield via the Cherenkov radiation mechanism. We detected a signal in the left-handed frequency band at 10 GHz. This is an indirect demonstration of reverse Cherenkov radiation as predicted in the work of Veselago [Sov. Phys. Usp. 10, 509 (1968)] and discussed in the works of Lu et al. [Opt. Express 11, 723 (2003)], Averkov and Yakovenko [Phys. Rev. B 72, 205110 (2005)], and Tyukhtin et al. [IEEE, Proceedings of the PAC, 2007 (unpublished), pp. 4156–4158]. Cherenkov radiation in artificially constructed materials [metamaterials (MTMs)] can provide unusual engineered features that can be advantageous for particle detector design.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition was reported.
Abstract: We report on the growth of 1–10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ∼780 cm−1 and 1367.4 cm−1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. ...

41 citations

Proceedings ArticleDOI
25 Oct 1999
TL;DR: The TITF photoinjector (TTF RF Gun) was tested at Fermilab in September and October 1998 and installed at DESY in November 1998, and produced its first beam in March 1999.
Abstract: A collaboration has been formed between FNAL, UCLA, LNFN Milano, the University of Rochester, and DESY to develop the technology of an RF photoinjector, followed by a superconducting cavity, to produce high bunch charge (8 nC) with low normalized emittance (<20 mm mrad) in bunch spacing trains of 800 bunches separated by /spl mu/s. The activities of bunch charge the collaboration fall into two categories: 1. the development of Injector II for the TeSLA/TTF accelerator. This photoinjector (TTF RF Gun) was tested at Fermilab in September and October 1998 and installed at DESY in November 1998. 2. the installation at the A0 Hall of Fermilab of a modified version of the TTF photoinjector, for photoinjector R&D and to study novel applications of high-brightness, pulsed electron beams. This photoinjector (A0 RF Gun) produced its first beam in March 1999. This paper presents a summary of the tests done at Fermilab on the TITF Injector II and the first results obtained on the new Fermilab photoinjector.

36 citations

Journal ArticleDOI
TL;DR: In this article, the dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described, and a universal method to simulate wakefield (CR) generation in a waveguide loaded with a dispersive and anisotropic medium is presented.
Abstract: Metamaterials (MTMs) are artificial structures made of periodic elements and are designed to obtain specific electromagnetic properties. As long as the periodicity and the size of the elements are much smaller than the wavelength of interest, an artificial structure can be assigned a permittivity and permeability, just like natural materials. Metamaterials can be customized to have the permittivity and permeability desired for a particular application. When the permittivity and permeability are made simultaneously negative in some frequency range, the metamaterial is called double-negative or left-handed and has some unusual properties. For example, Cherenkov radiation (CR) in a left-handed metamaterial is backward; radiated energy propagates in the opposite direction to particle velocity. This property can be used to improve the design of particle detectors. Waveguides loaded with metamaterials are of interest because the metamaterials can change the dispersion relation of the waveguide significantly. Slow backward waves, for example, can be produced in a MTM-loaded waveguide without corrugations. In this paper we present theoretical studies of waveguides loaded with an anisotropic and dispersive medium (metamaterial). The dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described. We present a universal method to simulate wakefield (CR) generation in a waveguide loaded with a dispersive and anisotropic medium. This method allows simulation of different waveguide cross sections, any transverse beam distribution, and any physical dispersion, of the medium. The method is benchmarked against simple cases, which can be theoretically calculated. Results show excellent agreement.

30 citations


Cited by
More filters
01 Sep 1994
TL;DR: In this article, the authors present a review of Charged Particle Dynamics and Focusing Systems without Space Charge, including Linear Beam Optics with Space Charge and Self-Consistent Theory of Beams.
Abstract: Review of Charged Particle Dynamics. Beam Optics and Focusing Systems Without Space Charge. Linear Beam Optics with Space Charge. Self-Consistent Theory of Beams. Emittance Variation. Beam Physics Research from 1993 to 2007. Appendices. List of Frequently Used Symbols. Bibliography. Index.

1,311 citations

Journal ArticleDOI
TL;DR: There are a wide variety of processing routes that have been developed for 2D-hBN, including also those for doping, substitution, functionalization and combination with other materials to form heterostructures or h-BNC hybrid nanosheets, which are systematically elaborated for novel functions.
Abstract: Two dimensional hexagonal boron nitride (2D-hBN), an isomorph of graphene with a very similar layered structure, is uniquely featured by its exotic opto-electrical properties together with mechanical robustness, thermal stability, and chemical inertness. It is thus extensively studied for application in field effect transistors (FETs), tunneling devices, deep UV emitters and detectors, photoelectric devices, and nanofillers. 2D-hBN is considered as one of the most promising materials that can be integrated with other 2D materials, such as graphene and transition metal dichalcogenides (TMDCs), for the next generation microelectronic and other technologies. Although it is by itself an insulator, it can well be tuned by several strategies in terms of properties and functionalities, such as by doping, substitution, functionalization and hybridization, making 2D-hBN a truly versatile type of functional materials for a wide range of applications. In this review, the distinct structural characteristics of 2D-hBN, doping- and defect-induced variations in energy bands and structures, and resultant properties, are presented. There are a wide variety of processing routes that have been developed for 2D-hBN, including also those for doping, substitution, functionalization and combination with other materials to form heterostructures or h-BNC hybrid nanosheets, which are systematically elaborated for novel functions. The comprehensive overview provides the types of the state-of-the-art 2D-hBN made by new synthesis strategies, where the mainstream approaches include exfoliation, chemical vapor deposition, and gas phase epitaxy, together with several other new methods that have been successfully developed in the past few years. On the basis of the extraordinary electrical and functional properties and thermal–mechanical stability, the applications of hBN-based nanosheets as substrates and dielectrics, passivation layers, and nanofillers in nanodevices and nanocomposites are discussed, together with the peculiar optical and wetting characteristics.

643 citations

Journal Article
TL;DR: The advantages of nuclear fusion as an energy source and research progress in this area are summarized in this article, where the current state of the art is described, including the Compact Ignition Tokamak (CIT), International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II.
Abstract: The advantages of nuclear fusion as an energy source and research progress in this area are summarized. The current state of the art is described. Laser fusion, inertial confinement fusion, and magnetic fusion (the tokamak) are explained, the latter in some detail. Remaining problems and planned future reactors are considered. They are the Compact Ignition Tokamak (CIT), the International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II. The design of the latter is shown. >

596 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reinterpreted the Landau damping phenomenon in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism.
Abstract: Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp “deflection” estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions.

367 citations

Journal ArticleDOI
TL;DR: In this article, the authors reinterpreted the Landau damping phenomenon in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism.
Abstract: Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of nonlinear echoes; sharp scattering estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the nonlinear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications.

266 citations