scispace - formally typeset
Search or ask a question
Author

Linda Yip

Bio: Linda Yip is an academic researcher from Stanford University. The author has contributed to research in topics: Receptor & T cell. The author has an hindex of 17, co-authored 30 publications receiving 1888 citations. Previous affiliations of Linda Yip include University of British Columbia & University of California, San Diego.
Topics: Receptor, T cell, Adenosine, Nod, NOD mice

Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Human neutrophils release adenosine triphosphate from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors, which provides signal amplification, controlling gradient sensing and migration of neutrophil.
Abstract: Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.

785 citations

Journal ArticleDOI
04 Nov 2010-Blood
TL;DR: It is concluded that pannexin-1 hemichannels and P2X1 and P 2X4 receptors facilitate ATP release and autocrine feedback mechanisms that control Ca(2+) entry and T-cell activation at the immune synapse.

279 citations

Journal ArticleDOI
TL;DR: It is concluded that ATP release and autocrine, positive feedback through P2X7 receptors is required for the effective activation of T cells.
Abstract: T-cell activation requires the influx of extracellular calcium, although mechanistic details regarding such activation are not fully defined. Here, we show that P2X(7) receptors play a key role in calcium influx and downstream signaling events associated with the activation of T cells. By real-time PCR and immunohistochemistry, we find that Jurkat T cells and human CD4(+) T cells express abundant P2X(7) receptors. We show, using a novel fluorescent microscopy technique, that T-cell receptor (TCR) stimulation triggers the rapid release of ATP (<100 microM). This release of ATP is required for TCR-mediated calcium influx, NFAT activation, and interleukin-2 (IL-2) production. TCR activation up-regulates P2X(7) receptor gene expression. Removal of extracellular ATP by apyrase or alkaline phosphatase treatment, inhibition of ATP release with the maxi-anion channel blocker gadolinium chloride, or siRNA silencing of P2X(7) receptors blocks calcium entry and inhibits T-cell activation. Moreover, lymphocyte activation is impaired in C57BL/6 mice that express poorly functional P2X(7) receptors, compared to control BALB/c mice, which express fully functional P2X(7) receptors. We conclude that ATP release and autocrine, positive feedback through P2X(7) receptors is required for the effective activation of T cells.

271 citations

Journal ArticleDOI
TL;DR: It is shown that the transcriptional regulator Deaf1 controls the expression of genes encoding PTAs in the pancreatic lymph nodes (PLNs), and lower PTA expression resulting from the alternative splicing of DEAF1 may contribute to the pathogenesis of type 1 diabetes.
Abstract: Type 1 diabetes may result from a breakdown in peripheral tolerance that is partially controlled by the expression of peripheral tissue antigens (PTAs) in lymph nodes. Here we show that the transcriptional regulator Deaf1 controls the expression of genes encoding PTAs in the pancreatic lymph nodes (PLNs). The expression of canonical Deaf1 was lower, whereas that of an alternatively spliced variant was higher, during the onset of destructive insulitis in the PLNs of nonobese diabetic (NOD) mice. We identified an equivalent variant Deaf1 isoform in the PLNs of patients with type 1 diabetes. Both the NOD mouse and human Deaf1 variant isoforms suppressed PTA expression by inhibiting the transcriptional activity of canonical Deaf1. Lower PTA expression resulting from the alternative splicing of DEAF1 may contribute to the pathogenesis of type 1 diabetes.

131 citations

Journal ArticleDOI
01 Aug 2008-Shock
TL;DR: The data suggest that A3 and P2Y2 receptors are involved in the influx of neutrophils into the lungs after sepsis, and pharmaceutical approaches that target these receptors might be useful to control acute lung tissue injury inSepsis.
Abstract: We have recently shown that A3 adenosine receptors and P2Y2 purinergic receptors play an important role in neutrophil chemotaxis. Chemotaxis of neutrophils to sites of infections is critical for immune defense. However, excessive accumulation of neutrophils in the lungs can cause acute lung tissue damage. Here we assessed the role of A3 and P2Y2 receptors in neutrophil sequestration to the lungs in a mouse model of sepsis. Sepsis was induced by cecal ligation and puncture (CLP) using adult male C57BL/6J mice (wild type [WT]), homozygous A3 receptor knockout (A3KO) mice, and P2Y2 receptor knockout (P2Y2KO) mice. Animals were killed 2, 4, 6, or 8 h after CLP, and peritoneal lavage fluid and blood were collected. Lungs were removed, and neutrophil infiltration was evaluated using elastase as a marker. Leukocyte and bacterial counts in peritoneal lavage fluid and blood samples were determined. Survival after sepsis was determined in a separate group. Leukocyte counts in the peritoneum were lower in A3KO and P2Y2KO mice than in WT mice. Conversely, initial leukocyte counts in the peripheral blood were higher in KO mice than in WT mice. Neutrophil sequestration to the lungs reached a maximum 2 h after CLP and remained significantly higher in WT mice compared with A3KO and P2Y2KO mice (P < 0.001). Survival after 24 h was significantly lower in WT mice (37.5%) than in A3KO or P2Y2KO mice (82.5%; P < 0.05). These data suggest that A3 and P2Y2 receptors are involved in the influx of neutrophils into the lungs after sepsis. Thus, pharmaceutical approaches that target these receptors might be useful to control acute lung tissue injury in sepsis.

91 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: It is shown that injury releases mitochondrial DAMPs into the circulation with functionally important immune consequences, including formyl peptides and mitochondrial DNA, which promote PMN Ca2+ flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo.
Abstract: Injury causes a systemic inflammatory response syndrome (SIRS) that is clinically much like sepsis. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors. Similarly, cellular injury can release endogenous 'damage'-associated molecular patterns (DAMPs) that activate innate immunity. Mitochondria are evolutionary endosymbionts that were derived from bacteria and so might bear bacterial molecular motifs. Here we show that injury releases mitochondrial DAMPs (MTDs) into the circulation with functionally important immune consequences. MTDs include formyl peptides and mitochondrial DNA. These activate human polymorphonuclear neutrophils (PMNs) through formyl peptide receptor-1 and Toll-like receptor (TLR) 9, respectively. MTDs promote PMN Ca(2+) flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTDs can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These signal through innate immune pathways identical to those activated in sepsis to create a sepsis-like state. The release of such mitochondrial 'enemies within' by cellular injury is a key link between trauma, inflammation and SIRS.

2,932 citations

Journal ArticleDOI
TL;DR: Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea as discussed by the authors.
Abstract: Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic, vascular and general surgery. An imbalance in metabolic supply and demand within the ischemic organ results in profound tissue hypoxia and microvascular dysfunction. Subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Recent advances in understanding the molecular and immunological consequences of ischemia and reperfusion may lead to innovative therapeutic strategies for treating patients with ischemia and reperfusion-associated tissue inflammation and organ dysfunction.

2,368 citations

Journal ArticleDOI
10 Sep 2009-Nature
TL;DR: Nucleotides are identified as a critical find-me cue released by apoptotic cells to promote P2Y2-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find- me signal and efficient corpse clearance in vivo.
Abstract: Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y(2)-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.

1,348 citations

Journal ArticleDOI
TL;DR: In the 10 years since the previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations, but there have been so many other developments that an update is needed.
Abstract: In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.

1,145 citations

Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: It is shown that increased salt concentrations found locally under physiological conditions in vivo markedly boost the induction of murine and human TH17 cells, which display a highly pathogenic and stable phenotype characterized by the upregulation of the pro-inflammatory cytokines GM-CSF, TNF-α and IL-2.
Abstract: There has been a marked increase in the incidence of autoimmune diseases in the past half-century. Although the underlying genetic basis of this class of diseases has recently been elucidated, implicating predominantly immune-response genes, changes in environmental factors must ultimately be driving this increase. The newly identified population of interleukin (IL)-17-producing CD4(+) helper T cells (TH17 cells) has a pivotal role in autoimmune diseases. Pathogenic IL-23-dependent TH17 cells have been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, and genetic risk factors associated with multiple sclerosis are related to the IL-23-TH17 pathway. However, little is known about the environmental factors that directly influence TH17 cells. Here we show that increased salt (sodium chloride, NaCl) concentrations found locally under physiological conditions in vivo markedly boost the induction of murine and human TH17 cells. High-salt conditions activate the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and serum/glucocorticoid-regulated kinase 1 (SGK1) during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5 or SGK1 abrogates the high-salt-induced TH17 cell development. The TH17 cells generated under high-salt conditions display a highly pathogenic and stable phenotype characterized by the upregulation of the pro-inflammatory cytokines GM-CSF, TNF-α and IL-2. Moreover, mice fed with a high-salt diet develop a more severe form of EAE, in line with augmented central nervous system infiltrating and peripherally induced antigen-specific TH17 cells. Thus, increased dietary salt intake might represent an environmental risk factor for the development of autoimmune diseases through the induction of pathogenic TH17 cells.

1,135 citations