scispace - formally typeset
Search or ask a question
Author

Lindell

Bio: Lindell is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Information protection policy & Cryptography. The author has an hindex of 1, co-authored 1 publications receiving 1979 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work considers a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information, and proposes a protocol that is considerably more efficient than generic solutions and demands both very few rounds of communication and reasonable bandwidth.
Abstract: In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated by the need both to protect privileged information and to enable its use for research or other purposes. The above problem is a specific example of secure multi-party computation and, as such, can be solved using known generic protocols. However, data mining algorithms are typically complex and, furthermore, the input usually consists of massive data sets. The generic protocols in such a case are of no practical use and therefore more efficient protocols are required. We focus on the problem of decision tree learning with the popular ID3 algorithm. Our protocol is considerably more efficient than generic solutions and demands both very few rounds of communication and reasonable bandwidth.

2,080 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This paper shows with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems, and proposes a novel and powerful privacy definition called \ell-diversity, which is practical and can be implemented efficiently.
Abstract: Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called k-anonymity has gained popularity. In a k-anonymized dataset, each record is indistinguishable from at least k − 1 other records with respect to certain identifying attributes.In this article, we show using two simple attacks that a k-anonymized dataset has some subtle but severe privacy problems. First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This is a known problem. Second, attackers often have background knowledge, and we show that k-anonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks, and we propose a novel and powerful privacy criterion called e-diversity that can defend against such attacks. In addition to building a formal foundation for e-diversity, we show in an experimental evaluation that e-diversity is practical and can be implemented efficiently.

3,780 citations

Journal Article
TL;DR: The study is extended to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f, which is the amount that any single argument to f can change its output.
Abstract: We continue a line of research initiated in [10, 11] on privacy-preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f = Σ i g(x i ), where x i denotes the ith row of the database and g maps database rows to [0,1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation results showing the increased value of interactive sanitization mechanisms over non-interactive.

3,629 citations

Book ChapterDOI
Cynthia Dwork1
25 Apr 2008
TL;DR: This survey recalls the definition of differential privacy and two basic techniques for achieving it, and shows some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.
Abstract: Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, and the data analysis techniques presented are rigorously proved to satisfy the guarantee. The key privacy guarantee that has emerged is differential privacy. Roughly speaking, this ensures that (almost, and quantifiably) no risk is incurred by joining a statistical database. In this survey, we recall the definition of differential privacy and two basic techniques for achieving it. We then show some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.

3,314 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: In this paper, the authors develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy, and demonstrate that they can train deep neural networks with nonconvex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
Abstract: Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.

2,944 citations