scispace - formally typeset
Search or ask a question
Author

Lindy L. Thomsen

Other affiliations: The Hertz Corporation
Bio: Lindy L. Thomsen is an academic researcher from GlaxoSmithKline. The author has contributed to research in topics: Cytotoxic T cell & DNA vaccination. The author has an hindex of 14, co-authored 18 publications receiving 1941 citations. Previous affiliations of Lindy L. Thomsen include The Hertz Corporation.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown in mice that natural killer (NK) cells are rapidly recruited in a CCR7-independent, CXCR3-dependent manner to lymph nodes on stimulation by the injection of mature DCs, and an induced pathway of NK cell migration in antigen-stimulated lymph nodes is identified.
Abstract: Naive T cells are stimulated by antigen-presenting dendritic cells (DCs) in secondary lymphoid organs, but whether other types of cell participate in T cell priming is unclear. Here we show in mice that natural killer (NK) cells, which are normally excluded from lymph nodes, are rapidly recruited in a CCR7-independent, CXCR3-dependent manner to lymph nodes on stimulation by the injection of mature DCs. Recruitment of NK cells is also induced by some, but not all, adjuvants and correlates with the induction of T helper cell type 1 (TH1) responses. NK cell depletion and reconstitution experiments show that NK cells provide an early source of interferon-γ (IFN-γ) that is necessary for TH1 polarization. Taken together, our results identify an induced pathway of NK cell migration in antigen-stimulated lymph nodes and a mechanism by which some adjuvants may facilitate TH1 responses.

1,235 citations

Journal ArticleDOI
TL;DR: The correlation between NOS activity and grade for breast cancer suggests that NO may provide a positive growth signal within the tumour microenvironment, and inhibition of NO generation in the intratumoural microenvironment may prove a useful cancer therapy by preventing angiogenesis, invasion and metastasis.
Abstract: Varied cellular expression and localisation of nitric oxide synthase (NOS) isoforms has been shown in human cancers, including tumours of the breast, ovary, stomach, cervix and central nervous system. Mapping of NOS expression within tumour tissue from breast and gastric cancers shows inducible NOS (iNOS) is expressed predominantly in stromal (macrophage and endothelial) cells, although the level of NOS activity is at least 1-2 orders of magnitude lower than the enzyme activity associated with cytotoxicity and apoptosis. There is evidence that the intratumoural environment may provide chemoattractant signals for monocyte-macrophage recruitment and their subsequent activation via expression of interleukin-4, IgE, and CD23. Such signals lead to induction of iNOS in human macrophages in vitro. The correlation between NOS activity and grade for breast cancer suggests that NO may provide a positive growth signal within the tumour microenvironment. In vivo studies showing increased growth rate, vascular density and invasiveness of a human tumour cell line transfected to constitutively express iNOS support this. Furthermore, in vivo administration of a highly selective inhibitor of iNOS limited invasion and growth rate of iNOS transfected tumours and other murine tumours expressing this isoform. Inhibition of NO generation in the intratumoural microenvironment may prove a useful cancer therapy by preventing angiogenesis, invasion and metastasis.

279 citations

Journal ArticleDOI
Lindy L. Thomsen1, Peter Topley1, Maria G. Daly1, Sara Brett1, Tite John Philip1 
16 Apr 2004-Vaccine
TL;DR: Two studies in mice suggest that both imiquimod and resquimod may be suitable adjuvants for therapeutic DNA vaccines requiring induction of potent cytotoxic T cell responses.

106 citations

Patent
20 Sep 2001
TL;DR: In this paper, the use of a 1H - imidazo [4,5 -c] -4- amine derivative as an adjuvant for use with nucleic acid vaccination was described.
Abstract: The present invention relates to the use of a 1H - imidazo [4,5 -c] -4- amine derivative as an adjuvant for use with nucleic acid vaccination.

68 citations

Journal ArticleDOI
06 Apr 2001-Vaccine
TL;DR: The data indicate that PMDD of plasmid DNA can protect against mucosal challenge with papillomavirus.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders.
Abstract: Natural killer (NK) cells are effector lymphocytes of the innate immune system that control several types of tumors and microbial infections by limiting their spread and subsequent tissue damage. Recent research highlights the fact that NK cells are also regulatory cells engaged in reciprocal interactions with dendritic cells, macrophages, T cells and endothelial cells. NK cells can thus limit or exacerbate immune responses. Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders.

3,108 citations

Journal ArticleDOI
07 Jan 2011-Science
TL;DR: NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development.
Abstract: Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity endowed with constitutive cytolytic functions. More recently, a more nuanced view of NK cells has emerged. NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development. Moreover, NK cells do not react in an invariant manner but rather adapt to their environment. Finally, recent studies have unveiled that NK cells can also mount a form of antigen-specific immunologic memory. NK cells thus exert sophisticated biological functions that are attributes of both innate and adaptive immunity, blurring the functional borders between these two arms of the immune response.

2,280 citations

Journal ArticleDOI
TL;DR: This review highlights the findings that have advanced the understanding of TGF-beta in the immune system and in disease.
Abstract: Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.

2,084 citations

Journal ArticleDOI
TL;DR: The NF-kappaB proteins themselves and proteins regulated by it have been linked to cellular transformation, proliferation, apoptosis suppression, invasion, angiogenesis, and metastasis as mentioned in this paper.

1,537 citations

Journal ArticleDOI
TL;DR: This review focuses on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
Abstract: Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein–coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.

1,475 citations