scispace - formally typeset
Search or ask a question
Author

Ling Bao

Bio: Ling Bao is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Ubiquitous computing & Ubiquitous robot. The author has an hindex of 4, co-authored 4 publications receiving 3455 citations.

Papers
More filters
Book ChapterDOI
21 Apr 2004
TL;DR: This is the first work to investigate performance of recognition algorithms with multiple, wire-free accelerometers on 20 activities using datasets annotated by the subjects themselves, and suggests that multiple accelerometers aid in recognition.
Abstract: In this work, algorithms are developed and evaluated to de- tect physical activities from data acquired using five small biaxial ac- celerometers worn simultaneously on different parts of the body. Ac- celeration data was collected from 20 subjects without researcher su- pervision or observation. Subjects were asked to perform a sequence of everyday tasks but not told specifically where or how to do them. Mean, energy, frequency-domain entropy, and correlation of acceleration data was calculated and several classifiers using these features were tested. De- cision tree classifiers showed the best performance recognizing everyday activities with an overall accuracy rate of 84%. The results show that although some activities are recognized well with subject-independent training data, others appear to require subject-specific training data. The results suggest that multiple accelerometers aid in recognition because conjunctions in acceleration feature values can effectively discriminate many activities. With just two biaxial accelerometers - thigh and wrist - the recognition performance dropped only slightly. This is the first work to investigate performance of recognition algorithms with multiple, wire-free accelerometers on 20 activities using datasets annotated by the subjects themselves.

3,223 citations

Proceedings ArticleDOI
05 Apr 2003
TL;DR: The tool has new functionality: context-aware experience sampling, which permits researchers to acquire feedback from users in particular situations that are detected by sensors connected to a mobile computing device.
Abstract: A new software tool for user-interface development and assessment of ubiquitous computing applications is available for CHI researchers. The software permits researchers to use common PDA mobile computing devices for experience sampling studies. The basic tool offers options not currently available in any other open-source sampling package. However, the tool also has new functionality: context-aware experience sampling. This feature permits researchers to acquire feedback from users in particular situations that are detected by sensors connected to a mobile computing device.

204 citations

Book ChapterDOI
12 Oct 2003
TL;DR: Three tools for acquiring data about people, their behavior, and their use of technology in natural settings are described: a context-aware experience sampling tool, a ubiquitous sensing system that detects environmental changes, and an image-based experience sampling system.
Abstract: Three tools for acquiring data about people, their behavior, and their use of technology in natural settings are described: (1) a context-aware experience sampling tool, (2) a ubiquitous sensing system that detects environmental changes, and (3) an image-based experience sampling system. We discuss how these tools provide researchers with a flexible toolkit for collecting data on activity in homes and workplaces, particularly when used in combination. We outline several ongoing studies to illustrate the versatility of these tools. Two of the tools are currently available to other researchers to use.

118 citations

Proceedings ArticleDOI
25 Apr 2004
TL;DR: The need for training data for probabilistic detection algorithms and some challenges identified when trying to collect it while testing three context-detection systems for ubiquitous computing and mobile applications are described.
Abstract: Ubiquitous, context-aware computer systems may ultimately enable computer applications that naturally and usefully respond to a user's everyday activity. Although new algorithms that can automatically detect context from wearable and environmental sensor systems show promise, many of the most flexible and robust systems use probabilistic detection algorithms that require extensive libraries of training data with labeled examples. In this paper, we describe the need for such training data and some challenges we have identified when trying to collect it while testing three context-detection systems for ubiquitous computing and mobile applications.

69 citations


Cited by
More filters
Book ChapterDOI
21 Apr 2004
TL;DR: This is the first work to investigate performance of recognition algorithms with multiple, wire-free accelerometers on 20 activities using datasets annotated by the subjects themselves, and suggests that multiple accelerometers aid in recognition.
Abstract: In this work, algorithms are developed and evaluated to de- tect physical activities from data acquired using five small biaxial ac- celerometers worn simultaneously on different parts of the body. Ac- celeration data was collected from 20 subjects without researcher su- pervision or observation. Subjects were asked to perform a sequence of everyday tasks but not told specifically where or how to do them. Mean, energy, frequency-domain entropy, and correlation of acceleration data was calculated and several classifiers using these features were tested. De- cision tree classifiers showed the best performance recognizing everyday activities with an overall accuracy rate of 84%. The results show that although some activities are recognized well with subject-independent training data, others appear to require subject-specific training data. The results suggest that multiple accelerometers aid in recognition because conjunctions in acceleration feature values can effectively discriminate many activities. With just two biaxial accelerometers - thigh and wrist - the recognition performance dropped only slightly. This is the first work to investigate performance of recognition algorithms with multiple, wire-free accelerometers on 20 activities using datasets annotated by the subjects themselves.

3,223 citations

Journal ArticleDOI
TL;DR: This work describes and evaluates a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity a user is performing, and has a wide range of applications, including automatic customization of the mobile device's behavior based upon a user's activity.
Abstract: Mobile devices are becoming increasingly sophisticated and the latest generation of smart cell phones now incorporates many diverse and powerful sensors These sensors include GPS sensors, vision sensors (ie, cameras), audio sensors (ie, microphones), light sensors, temperature sensors, direction sensors (ie, magnetic compasses), and acceleration sensors (ie, accelerometers) The availability of these sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data mining applications In this paper we describe and evaluate a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity a user is performing To implement our system we collected labeled accelerometer data from twenty-nine users as they performed daily activities such as walking, jogging, climbing stairs, sitting, and standing, and then aggregated this time series data into examples that summarize the user activity over 10- second intervals We then used the resulting training data to induce a predictive model for activity recognition This work is significant because the activity recognition model permits us to gain useful knowledge about the habits of millions of users passively---just by having them carry cell phones in their pockets Our work has a wide range of applications, including automatic customization of the mobile device's behavior based upon a user's activity (eg, sending calls directly to voicemail if a user is jogging) and generating a daily/weekly activity profile to determine if a user (perhaps an obese child) is performing a healthy amount of exercise

2,417 citations

Journal ArticleDOI
TL;DR: The state of the art in HAR based on wearable sensors is surveyed and a two-level taxonomy in accordance to the learning approach and the response time is proposed.
Abstract: Providing accurate and opportune information on people's activities and behaviors is one of the most important tasks in pervasive computing. Innumerable applications can be visualized, for instance, in medical, security, entertainment, and tactical scenarios. Despite human activity recognition (HAR) being an active field for more than a decade, there are still key aspects that, if addressed, would constitute a significant turn in the way people interact with mobile devices. This paper surveys the state of the art in HAR based on wearable sensors. A general architecture is first presented along with a description of the main components of any HAR system. We also propose a two-level taxonomy in accordance to the learning approach (either supervised or semi-supervised) and the response time (either offline or online). Then, the principal issues and challenges are discussed, as well as the main solutions to each one of them. Twenty eight systems are qualitatively evaluated in terms of recognition performance, energy consumption, obtrusiveness, and flexibility, among others. Finally, we present some open problems and ideas that, due to their high relevance, should be addressed in future research.

2,184 citations

Proceedings Article
09 Jul 2005
TL;DR: This paper reports on the efforts to recognize user activity from accelerometer data and performance of base-level and meta-level classifiers, and Plurality Voting is found to perform consistently well across different settings.
Abstract: Activity recognition fits within the bigger framework of context awareness. In this paper, we report on our efforts to recognize user activity from accelerometer data. Activity recognition is formulated as a classification problem. Performance of base-level classifiers and meta-level classifiers is compared. Plurality Voting is found to perform consistently well across different settings.

1,561 citations

Proceedings Article
01 Jan 2013
TL;DR: An Activity Recognition database is described, built from the recordings of 30 subjects doing Activities of Daily Living while carrying a waist-mounted smartphone with embedded inertial sensors, which is released to public domain on a well-known on-line repository.
Abstract: Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. One of the most recent, challenging and appealing applications in this framework consists in sensing human body motion using smartphones to gather context information about people actions. In this context, we describe in this work an Activity Recognition database, built from the recordings of 30 subjects doing Activities of Daily Living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors, which is released to public domain on a well-known on-line repository. Results, obtained on the dataset by exploiting a multiclass Support Vector Machine (SVM), are also acknowledged.

1,501 citations