scispace - formally typeset
Search or ask a question
Author

Ling-Feng Zhang

Bio: Ling-Feng Zhang is an academic researcher from South China Normal University. The author has contributed to research in topics: Topological insulator & Mott insulator. The author has an hindex of 3, co-authored 6 publications receiving 52 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the localization and topological transitions in a one-dimensional (interacting) non-Hermitian quasiperiodic lattice, which is described by a generalized Aubry-Andr\'e-Harper model with irrational modulations in the off-diagonal hopping and on-site potential and with non-hermiticities from the non-reciprocal hopping and complex potential phase.
Abstract: We investigate the localization and topological transitions in a one-dimensional (interacting) non-Hermitian quasiperiodic lattice, which is described by a generalized Aubry-Andr\'e-Harper model with irrational modulations in the off-diagonal hopping and on-site potential and with non-Hermiticities from the nonreciprocal hopping and complex potential phase. For noninteracting cases, we reveal that the nonreciprocal hopping (the complex potential phase) can enlarge the delocalization (localization) region in the phase diagrams spanned by two quasiperiodic modulation strengths. We show that the localization transition is always accompanied by a topological phase transition characterized the winding numbers of eigenenergies in three different non-Hermitian cases. Moreover, we find that a real-complex eigenenergy transition in the energy spectrum coincides with (occurs before) these two phase transitions in the nonreciprocal (complex potential) case, while the real-complex transition is absent with the coexistence of the two non-Hermiticities. For interacting spinless fermions, we demonstrate that the extended phase and the many-body localized phase can be identified by the entanglement entropy of eigenstates and the level statistics of complex eigenenergies. By making the critical scaling analysis, we further show that the many-body localization transition coincides with the real-complex transition and occurs before the topological transition in the nonreciprocal case, which are absent in the complex phase case.

53 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional non-Hermitian disordered Chern-insulator model with two typical kinds of non-hermiticities, the non-reciprocal hopping and on-site gain-and-loss effects, is investigated.
Abstract: The interplay among topology, disorder, and non-Hermiticity can induce some exotic topological and localization phenomena. Here we investigate this interplay in a two-dimensional non-Hermitian disordered Chern-insulator model with two typical kinds of non-Hermiticities, the nonreciprocal hopping and on-site gain-and-loss effects. The topological phase diagrams are obtained by numerically calculating two topological invariants in the real space, which are the disorder-averaged open-bulk Chern number and the generalized Bott index, respectively. We reveal that the nonreciprocal hopping (the gain-and-loss effect) can enlarge (reduce) the topological regions and the topological Anderson insulators induced by disorders can exist under both kinds of non-Hermiticities. Furthermore, we study the localization properties of the system in the topologically nontrivial and trivial regions by using the inverse participation ratio and the expansion of single-particle density distribution.

49 citations

Journal ArticleDOI
TL;DR: This work trains neural networks to predict the winding of eigenvalues of four prototypical non-Hermitian Hamiltonians on the complex energy plane with nearly $100% accuracy and paves the way to revealing non- hermitian topology with the machine learning toolbox.
Abstract: The study of topological properties by machine learning approaches has attracted considerable interest recently. Here we propose machine learning the topological invariants that are unique in non-Hermitian systems. Specifically, we train neural networks to predict the winding of eigenvalues of four prototypical non-Hermitian Hamiltonians on the complex energy plane with nearly $100%$ accuracy. Our demonstrations in the non-Hermitian Hatano-Nelson model, Su-Schrieffer-Heeger model, and generalized Aubry-Andr\'e-Harper model in one dimension and the two-dimensional Dirac fermion model with non-Hermitian terms show the capability of the neural networks to explore topological invariants and the associated topological phase transitions and topological phase diagrams in non-Hermitian systems. Moreover, the neural networks trained by a small data set in the phase diagram can successfully predict topological invariants in untouched phase regions. Thus, our work paves the way to revealing non-Hermitian topology with the machine learning toolbox.

28 citations

Journal ArticleDOI
TL;DR: In this article, the Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing in the phase diagram of the model.
Abstract: The topological Anderson and Mott insulators are two phases that have so far been separately and widely explored beyond topological band insulators. Here we combine the two seemingly different topological phases into a system of spin-1/2 interacting fermionic atoms in a disordered optical lattice. We find that the topological Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing in the phase diagram of our model. Lying between the two phases, we uncover a disordered correlated topological insulator, which is induced from a trivial band insulator by the combination of disorder and interaction, as the generalization of topological Anderson insulators to the many-body interacting regime. The phase diagram is determined by computing various topological properties and confirmed by unsupervised and automated machine learning. We develop an approach to provide a unified and clear description of topological phase transitions driven by interaction and disorder. The topological phases can be detected from disorder-/interaction-induced edge excitations and charge pumping in optical lattices.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a thorough review of recent Hubble constant estimates and a summary of the proposed theoretical solutions, including early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity.
Abstract: The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with enough rigor to explain multiple observations--whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. We present a thorough review of the problem, including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions. Some of the models presented are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within $1-2\sigma$ between {\it Planck} 2018, using CMB power spectra data, BAO, Pantheon SN data, and R20, the latest SH0ES Team measurement of the Hubble constant ($H_0 = 73.2 \pm 1.3{\rm\,km\,s^{-1}\,Mpc^{-1}}$ at 68\% confidence level). Reduced tension might not simply come from a change in $H_0$ but also from an increase in its uncertainty due to degeneracy with additional physics, pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.[Abridged]

603 citations

Journal Article
TL;DR: In this paper, the authors developed the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex, and classified gapped bands in one and two dimensions by explicitly finding their topological invariants.
Abstract: We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify ``gapped'' bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated ``exceptional points'' in momentum space. We also systematically classify all types of band degeneracies.

435 citations

01 Apr 2016
TL;DR: It is shown that the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity and a one-dimensional tight-binding model with gain and loss as well as long-range hopping is considered.
Abstract: We show that the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity. We consider a one-dimensional tight-binding model with gain and loss as well as long-range hopping. The system is described by a non-Hermitian Hamiltonian that encircles an exceptional point in momentum space. The winding number has a fractional value of 1/2. There is only one dynamically stable zero-energy edge state due to the defectiveness of the Hamiltonian. This edge state is robust to disorder due to protection by a chiral symmetry. We also discuss experimental realization with arrays of coupled resonator optical waveguides.

380 citations

Journal Article
TL;DR: In this article, the authors synthesize one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms.
Abstract: A messy topological wire Adding irregularity to a system can lead to a transition from a more orderly to a less orderly phase. Meier et al. demonstrated a counterintuitive transition in the opposite direction: Controlled fluctuations in the system's parameters caused it to become topologically nontrivial. The starting point was a one-dimensional lattice of ultracold rubidium atoms in momentum space whose band structure was topologically trivial. The researchers then introduced fluctuations in the tunneling between the lattice sites and monitored the atomic “wires” as the amplitude of the fluctuations increased. The wires first became topologically nontrivial and then went back to trivial for sufficient disorder strengths. Science, this issue p. 929 Controlled fluctuations in the tunneling between the sites of an atomic wire in momentum space cause a topological transition. Topology and disorder have a rich combined influence on quantum transport. To probe their interplay, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms. Measuring the bulk evolution of a topological indicator after a sudden quench, we observed the topological Anderson insulator phase, in which added disorder drives the band structure of a wire from topologically trivial to nontrivial. In addition, we observed the robustness of topologically nontrivial wires to weak disorder and measured the transition to a trivial phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform may enable realizations of strongly interacting topological fluids.

144 citations

Journal Article
TL;DR: This work proposes a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly, and paves the way to the development of a generic tool for identifying unexplored phase transitions.
Abstract: A neural-network technique can exploit the power of machine learning to mine the exponentially large data sets characterizing the state space of condensed-matter systems. Topological transitions and many-body localization are first on the list. Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques1. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain2, the thermal phase transition in the classical Ising model3, and the many-body-localization transition in a disordered quantum spin chain4. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

122 citations