scispace - formally typeset
Search or ask a question
Author

Ling Huang

Bio: Ling Huang is an academic researcher from Intel. The author has contributed to research in topics: Medicine & Anomaly detection. The author has an hindex of 33, co-authored 60 publications receiving 8157 citations. Previous affiliations of Ling Huang include University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results show that Tapestry exhibits stable behavior and performance as an overlay, despite the instability of the underlying network layers, illustrating its utility as a deployment infrastructure.
Abstract: We present Tapestry, a peer-to-peer overlay routing infrastructure offering efficient, scalable, location-independent routing of messages directly to nearby copies of an object or service using only localized resources. Tapestry supports a generic decentralized object location and routing applications programming interface using a self-repairing, soft-state-based routing layer. The paper presents the Tapestry architecture, algorithms, and implementation. It explores the behavior of a Tapestry deployment on PlanetLab, a global testbed of approximately 100 machines. Experimental results show that Tapestry exhibits stable behavior and performance as an overlay, despite the instability of the underlying network layers. Several widely distributed applications have been implemented on Tapestry, illustrating its utility as a deployment infrastructure.

1,901 citations

Proceedings ArticleDOI
21 Oct 2011
TL;DR: In this article, the authors discuss an emerging field of study: adversarial machine learning (AML), the study of effective machine learning techniques against an adversarial opponent, and give a taxonomy for classifying attacks against online machine learning algorithms.
Abstract: In this paper (expanded from an invited talk at AISEC 2010), we discuss an emerging field of study: adversarial machine learning---the study of effective machine learning techniques against an adversarial opponent. In this paper, we: give a taxonomy for classifying attacks against online machine learning algorithms; discuss application-specific factors that limit an adversary's capabilities; introduce two models for modeling an adversary's capabilities; explore the limits of an adversary's knowledge about the algorithm, feature space, training, and input data; explore vulnerabilities in machine learning algorithms; discuss countermeasures against attacks; introduce the evasion challenge; and discuss privacy-preserving learning techniques.

947 citations

Proceedings ArticleDOI
11 Oct 2009
TL;DR: In this article, a general methodology to mine this rich source of information to automatically detect system runtime problems was proposed, combining source code analysis with information retrieval to create composite features and then analyze these features using machine learning to detect operational problems.
Abstract: Surprisingly, console logs rarely help operators detect problems in large-scale datacenter services, for they often consist of the voluminous intermixing of messages from many software components written by independent developers We propose a general methodology to mine this rich source of information to automatically detect system runtime problems We first parse console logs by combining source code analysis with information retrieval to create composite features We then analyze these features using machine learning to detect operational problems We show that our method enables analyses that are impossible with previous methods because of its superior ability to create sophisticated features We also show how to distill the results of our analysis to an operator-friendly one-page decision tree showing the critical messages associated with the detected problems We validate our approach using the Darkstar online game server and the Hadoop File System, where we detect numerous real problems with high accuracy and few false positives In the Hadoop case, we are able to analyze 24 million lines of console logs in 3 minutes Our methodology works on textual console logs of any size and requires no changes to the service software, no human input, and no knowledge of the software's internals

777 citations

Proceedings Article
21 Jun 2010
TL;DR: This work first parse console logs by combining source code analysis with information retrieval to create composite features, and then analyzes these features using machine learning to detect operational problems to automatically detect system runtime problems.
Abstract: Surprisingly, console logs rarely help operators detect problems in large-scale datacenter services, for they often consist of the voluminous intermixing of messages from many software components written by independent developers. We propose a general methodology to mine this rich source of information to automatically detect system runtime problems. We use a combination of program analysis and information retrieval techniques to transform free-text console logs into numerical features, which captures sequences of events in the system. We then analyze these features using machine learning to detect operational problems. We also show how to distill the results of our analysis to an operator-friendly one-page decision tree showing the critical messages associated with the detected problems. In addition, we extend our methods to online problem detection where the sequences of events are continuously generated as data streams.

771 citations

Proceedings ArticleDOI
28 Jun 2009
TL;DR: This work develops a general framework for fast approximate spectral clustering in which a distortion-minimizing local transformation is first applied to the data, and develops two concrete instances of this framework, one based on local k-means clustering (KASP) and onebased on random projection trees (RASP).
Abstract: Spectral clustering refers to a flexible class of clustering procedures that can produce high-quality clusterings on small data sets but which has limited applicability to large-scale problems due to its computational complexity of O(n3) in general, with n the number of data points. We extend the range of spectral clustering by developing a general framework for fast approximate spectral clustering in which a distortion-minimizing local transformation is first applied to the data. This framework is based on a theoretical analysis that provides a statistical characterization of the effect of local distortion on the mis-clustering rate. We develop two concrete instances of our general framework, one based on local k-means clustering (KASP) and one based on random projection trees (RASP). Extensive experiments show that these algorithms can achieve significant speedups with little degradation in clustering accuracy. Specifically, our algorithms outperform k-means by a large margin in terms of accuracy, and run several times faster than approximate spectral clustering based on the Nystrom method, with comparable accuracy and significantly smaller memory footprint. Remarkably, our algorithms make it possible for a single machine to spectral cluster data sets with a million observations within several minutes.

507 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Book
11 Aug 2014
TL;DR: The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.
Abstract: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.After motivating and discussing the meaning of differential privacy, the preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some astonishingly powerful computational results, there are still fundamental limitations — not just on what can be achieved with differential privacy but on what can be achieved with any method that protects against a complete breakdown in privacy. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power. Certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed.We then turn from fundamentals to applications other than queryrelease, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams is discussed.Finally, we note that this work is meant as a thorough introduction to the problems and techniques of differential privacy, but is not intended to be an exhaustive survey — there is by now a vast amount of work in differential privacy, and we can cover only a small portion of it.

5,190 citations

Journal ArticleDOI
TL;DR: The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process high-dimensional data on graphs as discussed by the authors, which are the analogs to the classical frequency domain and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Abstract: In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogs to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.

3,475 citations